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ABSTRACT 

Let F be a discretely Henselian field of rank one, with residue field k a 

number field, and let D/F be an F-division algebra. We conduct an ex- 

haustive study of the decomposability of an arbitrary D. Specifically, we 

prove the following: D has a semiramified (SR) F-division subalgebra if 

and only if D has a totally ramified (TR) subfield. However, there may be 

TR subfields not contained in any SR subalgebra. If D has prime-power 

index, then D is decomposable if and only if D properly contains a SR di- 

vision subalgebra. Equivalently, D has a decomposable Sylow factor if and 

only if i(D ®n) ~ ± i(D) for some n dividing the period of D, that is, if n 
and only if the index fails to mimic the behavior of the period of D. There 

exists indecomposable D with prime-power period p2 and index p3. Every 

proper division subalgebra of D is indecomposable. Conversely, every inde- 

composable F-division algebra of p-power index embeds properly in some 

D of p-power index if and only if k does not have a certain strengthened 

form of class field theory's Special Case. Semiramified division algebras 

and division algebras of odd index always properly embed. Finally, these 

results apply to an extent over k(t), and we prove that there exist inde- 

composable k(t)-division algebras of period p2 and index p3, solving an 

open problem of Saltman. 
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Introduct ion  

Let F be a field. In this paper, an "F-division algebra" is a division ring D 

that  is central and finite dimensional over F. Two measures of the size of D 

are the square root of its F-dimension, or index,  and its order in the Brauer 

group, or p e r i o d .  Each measure has the same prime factors, and the period 

always divides the index. However, when they are unequal the index is often a 

complete mystery, even when the period is obvious from the description of D. 

This difficulty is at the root of much of the complexity in the theory of division 

algebras. 

Call D d e c o m p o s a b l e  if it is F-isomorphic to a tensor product of two non- 

trivial F-division algebras, or equivalently, if it has a proper nontrivial F-division 

subalgebra. I t  is easy to show that  when o(D) = i(D), the prime-power factors 

in the "Sylow decomposition" of D are indecomposable. When o(D) ¢ i(D), 

the issue is more subtle: Albert found decomposable division algebras of 2-power 

index in the early 1930's ([All), but then indecomposable division algebras of 

unequal period and index were discovered in 1979, in [ART] and then [Sal]. I t  

is important  to realize that  before these latter results, for all anyone knew an 

F-division algebra had index greater than its period "because" it had a decom- 

posable Sylow factor, in the same way a finite abelian group has order greater 

than its exponent "because" it has a noncyclic Sylow subgroup. This would have 

provided an explanation for bad index behavior in terms of the basic structure 

theory of division algebras. As it stands, the causes of bad index behavior and 

their relationships to decomposability are not completely understood, and form 

an interesting area of study. 

Over a number field k (i.e., a finite extension of Q), division algebras have 

equal period and index, and so their decomposability is uninteresting. Over 

the function field of a nonsingular point on a curve over Q, division algebras of 

unequal period and index appear, but the Brauer group is so complicated tha t  no 

one knows how to analyze their decomposability. However, over the function field 

F of a H e n s e l i a n  n e i g h b o r h o o d  of the point, there remain division algebras 

of unequal period and index, and their decomposability is both interesting and 

tractable. The tractabili ty is due to the fact that  as far as division algebras are 

concerned, k and F are not so different (1.0.1). Thus in this paper  we work 

over a r a n k  o n e  d i s c r e t e l y  H e n s e l i a n  F w i t h  r e s i d u e  field k a n u m b e r  

field. For example, F could be the field of formal power series k((t)). Many of 
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the results are proved in the slightly more general setting where k is a b s o l u t e l y  

s table ,  and the division algebras are t ame .  

We determine exactly how and when given F-division algebras decompose, and 

mostly determine the answer to the reciprocal problem of how and when they 

embed properly into other F-division algebras. It turns out that the decompos- 

ability of a F-division algebra D of p-power index is determined completely by the 

behavior of the index when the Brauer class of D is nmltiplied by p. We show 

that when i(D) ¢ o(D),  even though D may not itself be decomposable, the 

division algebra D ®n is decomposable for some n (Corollary 3.7). This provides 

a type of explanation for the erratic index behavior observed when the center is 

F (Remark 3.7.1). 

Some of our results carry over to certain division algebras with centers the 

rational function field k(t). As a demonstration, we present examples of inde- 

composable division algebras over k(t) of period p2 and index p3 (Corollary 6.4), 

solving an open problem posed by Saltman (Problem ~7,  [Sa2]). 

Results: Let F be a rank one discretely Henselian field with residue field a num- 

ber field k. Let D/F be a division algebra. The F-field extensions that  do not 

originate from k are the t o t a l l y  r ami f i ed  (TR) extensions, and the F-division 

algebras that do not originate from k are the s e mi r a mi f i e d  (SR) ones. With 

some valuation theory it can be shown that a division algebra is semiramified 

if and only if it has a totally ramified maximal subfield. On the other hand, 

a standard construction shows that every totally ramified F-extension embeds 

maximally in some semiramified F-division algebra (this may fail if k is not a 

number field). Thus the two often appear together. It is shown here that their 

association endures with respect to their containment in F-division algebras: D 

contains a totally ramified F-field extension if and only if it contains a semi- 

ramified F-division algebra (Corollary 3.8). Interestingly, however, D may have 

totally ramified subfields not contained in any semiramified subalgebra (Corollary 

3.9). 

The semiramified division algebras turn out to be the decisive factors in the 

matter of decomposability over rank one discretely Henselian F: It is proved 

that when D has p-power index, it is decomposable if and only if it properly 

contains a semiramified F-division algebra. Furthermore, every decomposition 

has a semiramified component (Theorem 2.2). 

This criterion for decomposability has a formulation that makes sense over any 
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field: If D has p-power index, then it is decomposable if and only if i(D ®p) =~ 

1 i(D) (Corollary 3.6). Of course, by group theory, the order of D in the Brauer 

group obeys the rule o(D <ap) = ~o(D). Therefore this result says that  D is 

decomposable exactly when its index does not mimic the behavior of its period 

with respect to tensor product. 

1 i(D) implies D is Saltman observed in [Sal] that over any  field, i(D <)p) = p 

indecomposable. Therefore one might ask whether the converse holds in general, 

as it does for our F. That  the answer is no follows from Tignol's indecomposable 

examples of prime period not equal to index in [Ti] (see also [Jb]). 

The criterion for decomposability obtained here for rank one discretely 

Henselian fields is both nontrivial and effective. Decomposable and indecom- 

posable examples of unequal p-power index and period are produced, and all 

decompositions that occur are characterized (Corollary 3.2, Theorem 3.3, and 

Corollary 5.2). It is shown that if D has one division subalgebra, then it has 

infinitely many nonisomorphic ones, ranging over all indexes dividing the in- 

dex of D (Corollary 3.10). Curiously, there is sometimes a gap  in the range of 

indexes of the semiramified subalgebras (Remark 3.5.3). All proper nontrivial 

F-division subalgebras are shown to be m a x i m a l  in the (usual) sense that  they 

are not properly contained in any other proper subalgebras of D (Theorem 2.2). 

In other words, there are at most two nontrivial factors in any decomposition. 

Interestingly, the criterion is geometric, in that  it involves only dimensional 

considerations of the division algebra in question ( i (D ®p) and i(D)), not the 

specific arithmetic features of the center. 

Reciprocal to the problem of decomposability is that of embeddability: If F is 

discretely Henselian of rank one, and D/F is a division algebra of p-power index, 

does it embed properly in another F-division algebra that is also of p-power 

index? Since all proper F-division subalgebras are maximal, this is definitely not 

true if D is already decomposable. 

It is shown here that all semiramified F-division algebras of p-power index do 

properly embed in F-division algebras of p-power index. There are some restric- 

tions on the invariants of the larger division algebra, as dictated by Theorem 3.3 

(Theorem 4.1). 

More generally, it is proved that every indecomposable D properly embeds in 

an F-division algebra of p-power index if and only if for every prime p of k, every 

character over the local field k~ is the restriction of a character over k of equal 
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order (Theorem 4.3). Thus every F-division algebra properly embeds if k has 

no Special Case (e.g., contains v/Z-f). A particular indecomposable D embeds if 

the character of D is not "a manifestation" of a Wang counterexample at certain 

primes in the k-ramification locus of the residue algebra of D. Thus every division 

algebra of odd p-power index properly embeds. However, if k = Q, it is shown 

(Corollary 4.4) that there exists an indecomposable division algebra of 2-power 

index that  does not properly embed in any division algebra of 2-power index. 

All of this shows that  in contrast to the criterion for decomposability, an em- 

beddability criterion would be arithmetic in nature, since it would depend on the 

arithmetic of k. 

The paper concludes with some examples of decompositions (Section 5), and 

then a discussion of how all of these results apply over the rational function field 

k(t) (Section 6). 

Many of these results hold for any field k such that all tame division algebras 

over all finite field extensions of k have equal period anti index. Such a field is said 

to be (tamely) abso lu te ly  s table.  By restricting to the particular example of k 

a number field, existence theorems may be proved, using constructions afforded 

by class field theory. Thus, with k absolutely stable it is possible to give some 

properties of any decompositions of D that occur (Theorem 2.2). With k a 

number field, it is proved that this result is best possible (Theorem 3.3 and 

Theorem 4.3). With k absolutely stable it is proved that if D is decomposable 

of p-power index, then p divides a certain invariant of D (Lemma 2.1). With k a 

number field, the converse is proved (Theorem 3.3), and both decomposable and 

indecomposable F-division algebras of unequal prime-power period and index are 

shown to exist. 

For other work on decomposability (in addition t o t h a t  listed above), see [Jb], 

[Ro], [Snl], and [SvdB]. 

The author thanks David Saltman for suggesting that the criterion involving 

primes established in Corollary 3.6(vi) could be cast into a more general setting 

(not involving primes), and the University of Texas at Austin for its hospitality 

during part of the preparation of this paper. He also thanks the referee for 

motivating improvements in the paper's readability. 

1. B a c k g r o u n d  a n d  n o t a t i o n  

Let F be a field, and D an F-division algebra. In general, the tensor prod- 
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uct of two F-division algebras is not another F-division algebra, but a cen t ra l  

s imple  F-algebra, that is, a simple ring central and finite dimensional over F.  

By Wedderburn's famous theorem, every central simple F-algebra A is a matrix 

algebra over an F-division algebra. Let A(A) denote this division algebra. Two 

central simple algebras are s imilar  if their underlying division algebras are F- 

isomorphic. The B r a u e r  g roup  Br(F) is defined to be the set of these similarity 

classes, with multiplication defined by F-tensor product, and identity element the 

class of F. Let [D] stand for the class of D in Br(F). If 5 C Br(F), let A(5) 
denote the unique (up to F-isomorphism) F-division algebra representing 5. If 

p is a prime number, let Br(F)(p) denote the p-primary part of Br(F),  and if 

(p, char(F)) = 1, call the elements of Br(F)(p) t ame .  

If L is an F-field extension, let .L stand for the algebra tensor product • ®g L, 

which extends scalars from F to L. In general, D L is not an L-division algebra, 

but a central simple L-algebra. Let .L also denote the induced map Br(F) --+ 

Br(L) on Brauer elements, called the restriction homomorphism. Let Br(L/F) 
be its kernel. Say L spli ts  D if [D] e Br(L/F), that is, [D] L = O. 

The index  i(D) is the square root of the F-dimension of D. This is equal to 

the smallest degree of all the splitting fields of D. The index of a Brauer element 

is the index of the representing division algebra. Let D ®~ denote the division 

algebra underlying the n-fold tensor product D ® . . .  ® D, that  is, the division 

algebra A(n[D]). The pe r iod  o(D) is the order of [D] in the Brauer group. That  

is, the smallest n such that [D ®n] -= n[D] = 0. Always o(D) I i(D ), and every 

prime dividing i(D) also divides o(D). Say F is s tab le  if o(D) = i(D) for all 

F-division algebras D, and abso lu te ly  s table  if every finite field extension of 

F is stable. For example, number fields are absolutely stable. 

The c h a r a c t e r  g roup  X(F)  is the group of of continuous homomorphisms 

from the absolute Galois group Gal(Fsep/F) to Q/Z. If X • X(F) ,  let K(X) 
denote the (cyclic) field extension of degree I~(I defined by )C. Let X(F)(p) denote 

the p-primary part of X(F).  Let N(L/F) denote the image of the usual norm 

map from L to F, and set N(X) = N(K(x)/F). 
For additional references, consult [AT], [JW], [Re], and [Se]. 

THE SET-UP. Let F be a discretely Henselian-valued field of rank one with 

absolutely stable residue field k, that  is, a field with a discrete valuation of rank 

one that  satisfies Hensel's Lemma (these are called re la t ive ly  comple t e  fields 

in IS]). If F is complete and contains k, then F is isomorphic to the field of formal 
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power series k((t)) in an indeterminate t, with coefficients in k ([Se], Ch. II, §4). 

Let p be a prime such that  (p, char(k)) = 1. By Witt 's  Theorem ([Se], Ch. XII) 

there is a split exact sequence 

(1.0.1) 0 , Br(k)(p) , Br(F)(p) , , X(k)(p) ~ 0. 

The splitting depends on the choice of a uniformizer for F (see below). 

Let t be a uniformizer for F. Let ( - , - )  denote the bihomomorphism 

( - , - )  : X(F) x F  , Br(F) 

X, s ~-~ (X, s) 

where (X, s) denotes the Brauer element associated to the usual cyclic crossed 

product over F defined by X and s ([Se], Ch. XIV). 

With this definition, (-,t)ix(k)(p) : X(k)(p) , Br(F)(p) is the splitting of 

(1.0.1) that corresponds to the uniformizer t of F,  where here X (k)(p) is identified 

with the group of u n r a m i f i e d  cha rac t e r s  X(Gal(ksep ®k F/F))(p),  which is the 

image of X(k)(p) in X(F)(p). If 5 E Br(F)(p), then write 5 = a -[- (X, t), where 

a is in the image of Br(k)(p) and X is in the image of X(k)(p) under (1.0.1). The 

element a is called the iner t ia l  or un rami f i ed  part of 5, and X is the c h a r a c t e r  

a ssoc ia ted  to  5. Occasionally, a will be identified with its preimage in Br(k) (p), 

just as X will be identified with its preimage in X(k)(p). 

Suppose 6 = a 4 (X, t). The group Br(F) is abelian, and since a and (X, t) 

are in distinct direct summands, 

(1.0.2) o(5) = lcm { o(a), o((x, t)) }. 

If s is another choice of uniformizer for F'  then s = u • t - x for some u E k 

and x E U 1, the group of principal units ([Se], Ch. XII). It can be shown using 

Hensel's Lemma that  U~ is divisible, so U~ c N(X). Therefore (~(, x) = 0, 

(X, s) = (X, ut), and 6 = (a + (X, l /u) )  4- (X, ut) is the splitting with respect to 

s. Thus, 

(1.0.3) 6 = ( a + ( X ,  i / u ) )4 - (x ,  ut), V u E k ,  

and every splitting of (1.0.1), i.e., every choice of uniformizer for F,  results in 

such a splitting of 5, for some u E k .  All of this shows the unramified part of 6 

depends on t, and is unique (only) modBr(K(x) /F) .  
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Since the choice of t is arbitrary, the analyses of an element 5 and an element 

+ (X, u), u E k ,  will always be parallel. Call 6 + (X, u) a twis t  of 6 by u with 

respect to X- 

Since the valuation on F is Henselian, it extends uniquely to A(5) /F ,  and so 

one may associate to 5 the usual Valuation theoretic objects ([JW]). Accordingly, 

call the invariant ~ :-- aK(x) of 5 the r e s idue  e l e me n t .  Let f(5) denote the 

r e s idu e  i n d e x  i(~) = i(aK(x)). Let e(5) denote the r a m i f i c a t i o n  i n d e x  IXI of 

the invariant X, which is also the index (and period) of (;V, t). Note that  ~ and the 

twist ~+(X, u) have the same invariants. Call an element ~ u n r a m i f i e d  whenever 

e(5) = 1, and s e m i r a m i f i e d  (SR) whenever f(5) = 1. Thus 6 unramified means 

= c~ F, for some a C Br(k), and 5 semiramified means 5 = (X, ut) for some 

unramified X E X(F )  and some u E k'. Of course, these definitions are derived 

from the valuation theory of the underlying F-division algebras. 

The following was first proved by Nakayama ([Na]). 

INDEX FORMULA 1.1: Let 5 C Br(F)  be tame. Then 

i(6) = e(~)f(~). 

A proof for the complete case appears in [Brl] (Lemma 4). For a proof for 

general Henselian fields, see [JW] (Theorem 5.15). 

The structure of finite field extensions of complete rank one discretely valued 

F is outlined in [Jn], Chapter II, §5, and the same proofs apply to the Henselian 

case (see also [S]). If a finite extension is obtained from k by F-scalar extension, 

then it called un rami f i ed .  It is called t o t a l l y  r ami f i ed  (TR) if it contains no 

nontrivial unramified subextension. The totally ramified extensions are obtained 

from F by adjoining a root of ut, for some u E k'. A finite extension E of F 

consists of its maximal unramified subextension T/F of degree f (E/F) ,  called 

the r e s idu e  d e g r e e  of E/F, followed by a totally ramified extension E/T  of 

degree e(E/F), called the r a m i f i c a t i o n  i ndex  of E/F. 
In [Br2], the totally ramified extensions and their relationships to F-division 

algebras are analyzed, and the following definitions are made: 

Definition 1.2: Let D/F be central simple, with Brauer class 6. The cei l ing 

n u m b e r  c~(D, t) - c~(6, t) for u e k' is the largest n such that  F(~/-~)  C A(D). 

The u p p e r  cei l ing n u m b e r  e(D) _-_ e(~) and the lower  cei l ing n u m b e r  

_c(D) ~_ c_(6) are the least common multiple and the greatest common divisor 
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of the c~(D,t), respectively, taken over all u E k'. Call D or 5 s t u b b e d  if 

e(D) I f(D),  and s t e p p e d  if e(D) Xf(D). 

By this definition, ~(D) is the degree over F of the largest totally ramified 

subfield of A(D), and c_(D) is the number n such that  A(D) contains all totally 

ramified extensions of degree dividing n. 

The following is a summary of results that appear in [Br2]. 

THEOREM 1.3: Suppose 6 = a 4- (X, t) E Br(F) is tame, as per (1.0.1). Then 

(i) c~(5, t), c_(5), and ~(5) alt divide e(5). 

(ii) c~(5, t) = supn[e(~) {n [ i((a + (X, l /u) )  I((nx)) = f(5)}. 

(iii) n[_e(5) c = a n l e ( 5 )  and i ( ( a + ( X , u ) )  K(nx))=f(5)  V u • k .  

(iv) _c(5) and e(5) are invariants of b, and are the same for all twists 5 + (X, u) 

of  5 with respect to X. 

(v) If5 is stubbed, then _e(5) = e(5) ] f(5), and A(5) contains all totally ramified 

extensions of degree dividing e(5) (but none of larger degree). 

(vi) I f  k is a number field, then always e__(5) [ f(5), and 5 is stepped if and only 

if  c(5) = f((~), f(5) ¢ e((~), and [:(5) = e(5). 

DECOMPOSABILITY. Call an F-division algebra D d e c o m p o s a b l e  if it can be 

written as a tensor product of 2 nontrivial F-division algebras, i.e., D =~ DI ® D2 

for nontrivial F-division algebras D1 and D2. A dimension count forces i(D) = 

i(D1) i(D2). Call D i ndecomposab l e  if it isn't decomposable. 

D is decomposable if and only if D properly contains a nontrivial F-division 

algebra: For both of the Di embed in D as subalgebras. Conversely, one can use 

the Double Centralizer Theorem ([Re] (7.11), (7.13)) to show that  any nontrivial 

proper F-division subalgebra Di tensored with its centralizer D2 is isomorphic 

to D, hence a decomposition of D. 

We will usually prefer to deal in Brauer elements. If the Brauer class of D is 5, 

then it is easy to see that  D is decomposable if and only if there exist nontrivial 

Brauer elements 51 and 52 such that  5 = 51 + 52 and i(5) = i(51) i(52). Call an 

element 5 E Br(F) mul t ip l i ca t ive ly  decomposab l e  if its representing division 

algebra D = A(5) is decomposable, and i ndec o mp o s a b l e  if not. In general, 

(1.3.1) 5 = (~1 Jr- 52 ==~ i (5)[  i ( b l ) "  i(52). 

Since an element 6 always has a "Sylow decomposition" into factors of prime 

power index, w h e n  discuss ing  decomposab i l i ty ,  a lways  a s s u m e  t h a t  i(5) 
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is a p r i m e  p o w e r  no t  divis ible  by  char(k). If i(5) is a prime power and i(6) = 

0(5), then it is easy to show that A(5) is indecomposable. Call A(5) t r iv ia l ly  

i n d e c o m p o s a b l e  in this case. Say A(5) has a (nontrivial) spl i t  d e c o m p o s i t i o n  

if it has a decomposition into an unramified factor and a semiramified factor. 

Then for some choice of t, the expression A(6) ~- A(a) ® A(X , t) is a l r e a d y  a 

d e c o m p o s i t i o n .  

LEMMA 1.4: Let p be prime, with (p, char(k)) = 1. Suppose 5 = a 4- (X, t) E 

Sr(F)(p) .  Then 

A(6) has a split decomposition ~ f(5) # 1 and ~(5) = e(6) 

A(5) is trivially indecomposable ~ ~ is semiramified or K{X) C A(a). 

Proof: Suppose A(~) has the split decomposition A(6) -- A(a)  ® A(X , t). Then 

i(5) = i(a) i((x, t)), hence i(a) = f(6) ¢ 1 by Index Formula 1.1. Since D 

visibly has a TR subfield of degree e(D), namely F(e(D~V~) C A(X, t), ~(5) = e(5) 

by Definition 1.2. Conversely, if ~.(~) = e(6), then for some u E k ,  f(5) - 

i((a + (X, 1/u)) K(x)) = i(a + (X, l /u))  by Theorem 1.3(iii), so that i(6) = 

i ( a + ( x ,  l / u ) ) - i ( ( x ,  ut)). If f(5) # 1, then this shows A(6) ~ A ( a +  ()(, l /u) )  ® 

A(X, ut) is a split decomposition, as desired. 

If 5 has prime-power index and i(5) = 0(5) (so A(5) is trivially indecom- 

posable), then since i(6) = i(aK(x)) . i((x, t)) (by Index Formula 1.1) and 

0(5) = l cm{o(a ) ,o ( (x ,  t ))} (by 1.0.2), either i(aK(x}) • i((x, t)) = o((x, t)), 

or i(aK(x}) • i((x, t)) = o(a).  In the 

i(a g(x}) = f(6) must be trivial, and 6 

i(( X, t)) = [K(x}:  F] and o(a)  = i(a), 

first case, since i((x, t)) -- o((x, t)), 

must be SR. In the second case, since 

necessarily [K(x} : F] i(a K(x)) = i(a), 

hence K<X} C A(a) by the basic theory. Conversely, it is easy to see that if 5 is 

SR or K()() C A(a) ,  then A(5) is trivially indecomposable. | 

As mentioned previously, all results must be essentially indifferent to the re- 

placement of each 5 by 5 + (X, u), u C k', where X is the character of 5. Indeed, 

let Xi be the character of the element 6i (i = 1, 2). If A(5) _-__ A(51) ~ A(52) 

is a decomposition, then A(6 + ()~, u)) ~- A(51 + (X l, u)) ® A(62 + (X2, u)): 

For the addition is correct since ()(, u) = (X1, u) + (X2, u), and the indexes are 

multiplicative since i(6 + (X, u)) = i(5) and i(6~ + (Xi, u)) = i(61). 

THE SPECIAL CASE. In Section 4 the so-called Specia l  Case  of the Grunwald- 

Wang Theorem, which is relevant to number fields k, will be applied. Recall the 
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definition ([AT], Ch.X): Let k be a number field, and let r and s be numbers 

maximal such that the primitive root of unity ¢2- E k ,  and (2, E k((2~+1)'. Let 

So = {p[kp (¢2-+~)/kp is noncyclic}. Then say k has a Specia l  Case  if k((~,+z ) /k  

is noncyclic, and a n o n e m p t y  Specia l  Case  if So is nonempty. For example, 

it can be shown ([AT], Ch. X) that Q has a (nonempty) Special Case, but any 

field containing x/%-1 does not. The Special Case is an obstacle to the lifting of 

a finite family {~bp } (distinct p) of local characters to a global character ¢ when 

2 s + l l m  = lcm{ I~bpl }, So ~ ~, So is contained in the (finite) set of primes p, 

and ~So ¢p(((2, + 1) m) ¢ 0. Then, any ¢ E X(k) that restricts to the Cp has 

order divisible by 2m, and the set {¢p } constitutes a W a n g  c o u n t e r e x a m p l e .  

Otherwise, there exists such a ¢ of any order divisible by m, and the set {¢p } 

has a G r u n w a l d  lift. Note that the Special Case is irrelevant when working 

with odd numbers m. 

2. D e c o m p o s a b i l i t y  

As in the last section, let F be a rank one discretely Henselian field with abso- 

lutely stable residue field k, and let p be a prime of Q such that (p, char(k)) = 1. 

Suppose A(6)/F is decomposable (of p-power index), and A(6) ~ A(61)®A(62) 

is a decomposition. Set 6 = a q- (X, t) and 61 = a~ -i- (X~, t). Since i(6) = 

i(61) i(62), 

(2.0.1) e(6)f(5) =e(51)f(51)e(52)f(52) 

by Index Formula 1.1. 

The next lemma is crucial in all that follows. 

LEMMA 2.1: Suppose A(6) is decomposable and has p-power index, as in the 

above set-up. Let E -- min~{o(6~)}. Then 

I (f(6), c_(5)). 

In particular, pie__(6). Moreover: 

(i) Any nontrivial decomposition of A(6) has the form/1(6) -~ A(61) ~ A(62) , 

such that e(t~l) l (c_(6), e(62)), and e(62) = e(fi). 

(ii) For each u E k', i(a~ + (Xi, u)) [ i(a + (X, u)) /or each i. 

(iii) Ifc__(a) # e(a), then e < ( i ( a +  (X, u)),e(6)) forsome u E k'. 
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(iv) Ife.(~) :/: e(5), then e < ( i (a  + (X, u)),e(6)) for all u e k .  

Proof  Albert showed that  over any field, 

1 i(6), (2.1.1) p ]i(6) i(#) I p 

and Saltman observed that  equality implies A(5) is indecomposable ([Sal]). 

CLAIM: 

1 i(5) ¢==> n I (f(6),_c(6)). (2.1.2) i(nh) = ~-ff 

By Index Formula 1.1, i(nh) ---- e(n~)f(nh). Since n5 = na+(nx,  t), both e(n6) - 

]nxI = e(5) / (e(5) ,n) ,  and f(nh) = i(nc~K(~×)). Of course, e(5) / (e(~) ,n)  > 

le(5) .  Since k is absolutely stable, i (na g(~x)) > l i(c~g<~×}), and always 
i(a g(nx}) > i(ct K(x}) - f(5), by the basic theory. (Here the unramified ele- 

ments a and X are identified with their preimages over k.) Hence f(nh) > ~f(5). 

Thus multiplication by n reduces the ramification and residue indexes each by at 

most n, and 

(2.1.3) i(nb) _> n ~ e ( 5 ) f ( 5 ) =  n ~ i ( 5 ) V n ,  

with equality if and only if e(n6) = ~e(6) and f(n~) = ~f(6). To prove the 
claim it now suffices to show e(nb) = ¼e(5) and f(nb) = I f (5)  if and only if 

n ] (f(5), _c_(~)). 
Since f(nb) = i(naK(n×)), f(5) = i(aK{×)), and k is absolutely stable, f(nb) = 

~f($) if and only if both n divides i(a K(~x) ), and i(a K(nx)) is equal to i(ag<×)). 

This is equivalent to max{ 1, i(aK('~x))/n} = l f (5) ,  i.e., 

max{ n, i(a K('~x)) } = f(6).  

For if n] i(aK(nx)), then max{l ,  i(ag(~×>)/n} = i(ag{~x>)/n, and if in 

addition i(a K{~x)) = f(6), then max{l ,  i(ctK(~x))/n} = f(5) /n.  Conversely, 

if max{l ,  i (a  g(~x))/n} = f (5) /n ,  then since f(6) < i(aK{'~x}), 

max{l ,  i(ax<n×>)/n} = i(ag<~x>)/n, 

hence n] i(ag<nx)), and f(5) = i(ag(nx)). 
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Always i(c~ K(n-~)) > i(c~ K(x)) = f(6), so max{n, i((~K(nx))} = f(6) if and 

only if n If(6) and i(c~ K('x}) -- f(6). By Theorem 1.3(iii), this is equivalent 

to n If(6) and n I c(6). Therefore f(nT) = l f (6)  if and only if n I (f(6),c_(6)). 

Since c_(6) I e(6 ) (by Theorem 1.3(i)), n I (f(6),c(6)) implies that  n ] e(6), hence 

f(nT) -- ~f(6) implies that  e(n6) -- ~e(6). This proves the claim. 

By definition, the number e divides o(61) and 0(62), hence it divides i(61) and 

i(62). Therefore by (2.1.1), i(~(~) I ¼ i(Ti). Since c6 = ~1+e52, i(eh) I i(e51)i(e52) 
by (1.3.1), hence i(ch)I ~ i(61)i(62) = ~ i(6). By (2.1.3), i(eT) > ~ i(6), hence 

i(eh) = ~ i(6). Therefore, by the claim, e I (f(6),c_(6}), proving the first part  of 

the lemma. 

Since each e(6i) Io(6i ) by (1.0.2), and one of the o(6~) equals e, e(6i) I( for 

some i. Since A(6) is decomposable, e lc(6 ) by the above, and by Theorem 1.3(i), 

c_(6) l e(6 ). Conclude e(6~) le((~ ) for some i. Since ~ -- X1 + X2, abelian group 
theory then implies that  e(51) and e(62) both divide e(6), and the larger is. equal 

to e(6). Since all elements have p-power order, either e(61) I e(62 ) or e(52) I e(61 ). 

Switch indices if necessary to make e(61) le(62), so then e(62) = e(6). Since 

e(Ti) I e for some i, e(61)I e Ic(6) by the above. This proves (i). 

As above, assume e(61) I e(62), so then e(62) = e(6)~ and (2.0.1) becomes 

(2.1.4) f(6) = e(61)f(61)f(62). 

By (1.0.2), o(al) I o(51), and always O(61) I i(61) by the basic theory. Therefore 

since i(51) I f(6) by (2.1.4), o (a l )  I f(6). Also, f(6) - i(aK(×)) I i(a), and since 1< 
is absolutely stable, f(6) I o(a  ). Put t ing these together yields o(a l )  I o(a),  hence, 

since a = a l  +a2 ,  o(a2) I o(a) also (again by abelian group theory). It is easy to 
show that  all of this works if a and ai are replaced by a + (X, u) and ai + (Xi, u), 

respectively, for any u E k .  This proves (ii), since k is absolutely stable. 

If_c(6) ~ e(6), then ~ < e(6) (since ~1c_(6) 1e(6)). Since e(6) = e(62) and 

e(62) = IX2[ <_ 0(62) (by (1.0.2)), c < e(6) ~ ~ < e(62) _< 0(62) and c - 

o(51) < e(5). By Definition 1.2 of c(6) and Theorem 1.3(iii), c_(6) ~ e(6) implies 

f(6) < i(a+(~(, u)) for some u E k ,  and since i(61) = e(61)f(61) ( f ( 6 ) ,  i(61) < 

i(a + (X, u)), hence o(61) < i(a + (~(, u)). Therefore e < ( i (a  + ()¢, u)) ,e(6))  

for some u E k .  This proves (iii). 

If e(6) ¢ e(6), then of course _c(6) ¢ e(5), but by the definition of e(6), this 

t ime o(61) < ( i(a + (~(~ u)), e(6)) for all u E k .  This completes the proof. | 
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Remark 2.1.5: The author thanks B.A. Sethuraman for suggesting the use of 

Saltman's observation on (2.1.1) to improve the proof of this lemma ([Sn2]). 

THEOREM 2.2: Suppose 6 has p-power index, and 3(6) ~- A(61) ® 3(62) is a de- 

composition, with e(61) [ e(62). Then A(61) and A(62) are both indecomposable, 

and one of them is semiramified (SR). Moreover, either 

(i) 61 is Sit and 62 is not SR, or 

(ii) •(6) = e(5) (i.e., there exists a split decomposition), 52 is SR, and i(61) = 

0(61) = f(6). 

Proof'. By (2.1.3), ~ i(6) [ i(p6). Since p6 = p61 -4-p62, i(p6) li(p61)i(p62) by 
(1.3.1). Each 5i is nontrivial, hence by (2.1.1), i(p6~)[~i(bi). Since A(6) 

3(61) ® A(62) is a decomposition (by hypothesis), i(61)i(62) = i(6). Put t ing  all 

of this together yields ~ i(6)[ i(p6) [ i(p61)i(p62) [ ~ i(61)i(62) = ~ i(6). Both 
1 i(6i). Therefore ends are equal, and the desired conclusion is that  i(p6i) = 

A(6i) is indecomposable by Saltman's observation on (2.1.1). 

As usual, set 6 = a 4 (X, t) and 6~ = a~ 4 (Xi, t). Since e(61) [e(62) by 

hypothesis, 

(2.2.1) e(61)]e(6) = e(62), f(6) = e(61)f(61)f(62), and e(61)](f(6),_c(6)). 

The first two equations follow from (2.1.4) and the argument leading up to it. 

The third follows from the observation that  since e(61) I e(62), e(61) must divide 

0(62), hence e(61) divides (o(61), 0(62)), which divides (f(6), c(6)) by Lemma 2.1. 

Since e(61) 1c_(6), 

(2.2.2) = f ( 6 )  

by Theorem 1.3(iii). The technique for the rest of the proof is to examine the 

result of extending the base to K(e(51)X). To simplify notation, abbreviate e(5) 

to e, e(bi) to ei, and similarly for the other invariants. 

CASE 1: i(a K{elx)) _> i ( a K ( e l x ) ) .  Since X = X1 + X2, e l x  = elx2, hence 

K(elX) = K(elX2). Always elf2 _> [K(x2) : K(elX2)] i(a K(x2)) _> i(aK(elx2)), 
and since K(elX) -- K(eIx2), elf2 >_ i(aK(e1×)). By hypothesis, i(a K(elx>) _> 
i(aK(elx)), and by (2.2.2), i(a K<elx)) = f. But by (2.2.1), f = elflf2 ! Therefore 

elf2 >_ elflf2, hence h = I. Thus 61 is SR. 
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CASE 2: i(a g(eln>) < i(o~K(elx)). Since k is absolutely stable, this means 

O(OZ K(elX)) < O(o~K(elx)). Therefore since OL K(elX) : O:1 K(elX) "d-OL g(elX),  

i(aK(~lx)) = i(aK(~lx>). Therefore by (2.2.2), i (a l  K(~X)) = f,  hence i (a l )  > f. 

Since e l f l  >_ i (a l ) ,  this yields a string of inequalities i (a l )  > f = elf lf2 _> 

f2 i (a l )  _> i (a l ) .  Therefore i (a l )  = f = elf1, and f2 = 1. This shows 52 is SR, 

as contended. Moreover, i(51) -- i (al)  = f. By (1.0.2), i (a l )  = o (a l )  [o(51), 

and always o(51) 1 i(51). Conclude o(51) -- i(5]) -- f. 

It remains to prove (i) and (ii). To prove (i), suppose 52 is not SR. Then Case 

1 above applies (since 62 is SR in Case 2), hence 51 is SR. To prove (ii), suppose 

52 is SR. Then since e = e2, there exists a TR subfield of A(52) of degree e. 

Since A(~2) C A(~), the same is true of A(5). Therefore (by Def. 1.2) e = e. 

Since e -- e2, f = i(51) by (2,2.1), hence f ¢ 1. By Lemma 1.4, f ¢ 1 and 

= e are together equivalent to existence of a (nontrivial) split decomposition, 

as contended. In Case 1, 51 is SR, so i(51) = o(5~) = el ,  and by (2.2.1), 

f = el .  Conclude i(51) = o(~1) = f, as desired. In Case 2, already it has been 

demonstrated that  i(51) = o(51) = f. This completes the proof. | 

Remark 2.2.3: Stronger restrictions on the factors of a decomposition cannot 

be made: In Theorem 3.3 it will be shown that  for a given D, there exist de- 

compositions D TM D1 ® D2 with e(51) I e(~2) and e(61) any value between 1 and 

(f(5), c_(5)), which is all of the latitude allowed by Lemma 2.1(i). If ~(~) -- e(5), 

examples as in (ii) are shown to exist. In Theorem 4.3 it will be shown that  the 

absence of constraints on 52 in (i) is required: For certain k, e.g. k = Q(i), all 

indecomposable division algebras D2 are part of some nontrivial decomposition. 

3. R e s i d u e  f i e ld  a n u m b e r  f i e ld  

A prime field is a field that  has no proper subfields, i.e., either a finite field of 

prime order, or the rational number field. All finite extensions of prime fields are 

absolutely stable, hence candidates for the residue field k in the above results. 

But if k is a finite field, then Br(F)  - X(k),  hence F is absolutely stable, and 

all F-division algebras are indecomposable. In this section the remaining case, 

k a number field, is explored. The main result is Theorem 3.3 and proof, which 

gives a criterion for decomposability and a characterization of all decompositions 

of a given D. Several corollaries follow concerning the role of the semiramified 

subalgebras. 
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Other candidates for k are fields finitely generated of transcendence degree 1 

over a finite field (the "global fields" that are not number fields). They are perfect 

with respect to primes not dividing their characteristics. For such primes, Index 

Formula 1.1 holds, and the theory is similar to that for number fields (except no 

Special Case!). They are not considered below, for simplicity's sake. 

The following assumes a knowledge of the theory of central simple Mgebras 

and the Brauer group over a number field, as in [Re]. 

Let F be a rank one discretely Henselian field with residue field k a number 

field, and uniformizer t. For each prime q of k, let Fq D F denote the rank 

one discretely Henselian field with residue field kq and uniformizer t. Let the 

subscript q denote "at the prime q". For example, let ~q denote the image of ~ in 

the homomorphism Br(F) --* Br(Fq). Obviously e(bq) I e(5 ) and f(bq) I f(5). Let 

Loc(a) denote the ramification locus of an element a E Br(k), that is, the (finite) 

set of primes of k at which i(aq) is nontrivial. If 3 E Br(l) for a finite extension 

I/k, let Lock (3) denote the k-locus of primes divisible by the primes (of l) in 

Loc(j3). As usual, the unramified character X will sometimes be identified with 

its counterpart over k, and then the unramified extension K ( x I / F  is viewed as 

a finite extension of k .  

LEMMA 3.1: Suppose ~ E Br(F)  has p-power index. Let R be the (possibly 

infinite) set of primes of k at which ~ has maximal index. Then 

p lc(~) ~ p le(~) and e(~q)-- 1 V q E R .  

Proo~ Set ~ = a 4 (X, t). Abbreviate e(~) to e, and similarly for the other 

invariants. By Theorem 1.3(iii), P l_c_ ¢=~ p l e and i((~ q- (X, u)) K(px)) -- 

f, V u E k .  If ~ is nontrivial, then its ramification locus over K(X) is finite, and 

then R is finite. Conversely, if ~ is trivial, then R consists of all primes of k. 

(~ ) :  I fp /~e ,  then p/~c by Theorem 1.3(iii). 

Suppose p i e  and eq ¢ 1 for some q E R. By Theorem 1.3(vi), c l f  since k 

is a number field, so if f = 1, then c = 1 and p/~c. Now assume f ¢ 1. Since 

q E R, f~ = f ¢ 1, so i(~ K(xq)) ¢ 1. By local class field theory this implies 

K(Xq) C A(aq), hence a ~  (px") has index p .  f, hence i(a K(pX)) -~ p .  f by the 

local-global index formula for k a number field ([Re] (32.19)). Therefore p ,~c_ by 

Theorem 1.3(iii). 

( ~ ) :  Suppose P i e ,  and eq = 1 for all q E R. By definition of R, i ( ( a +  

(X, u)) K(x~)) = f for all u E k', and since Xq is trivial, i ( ( a +  (X, u))~ (vxq}) = f 
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for all q E R. I fp  is a prime not in R, then i ( ( a +  (ik, u))~ ~{xD) _< f /P  ( P l f  if 

R does not contain all primes of k), hence i((a + (X, u)) K(pXp}) <_ f. Therefore 

i((a + (X, u)) K(pxq/) -< f for all primes q of k and for all u c k ,  hence by the 

local-global index formula again, i(a + (%, u) K(~x}) = f for all u C k .  Therefore 

p[_c_ by Theorem 1.3(iii). | 

COROLLARY 3.2: There exist indecomposable F-division algebras of unequal 

period and index. The smallest examples have (o, i) = (p2,p3), for any number 

field k. 

Proof: Let a E Br(k) have ramification locus {ql,q2}, with index p2 (and 

opposing invariants) at each prime. Such an a exists by a theorem of Hasse ([Re] 

(32.13)). By the Grunwald Wang Theorem, there exists a character X of order 

p2 that has order p at ql and q2. Let 6 = a~-(X, t). Using (1.0.2), Index Formula 

1.1, and the local-global index formula, compute 0(6) = p2, and i(5) = p2 .p = p3. 

By Lemma 3.1, p/~c_(5), and so A(6) is indecomposable by Lemma 2.1. 

By (2.1.3), i(6) I p 2. i(p6), and if o(6) = p, i(pS) = 1. Therefore if o(5) = p, 

then 0(5) • i(5) if and only if i(/~) = p2. If 0(5) = p, then i(a) and i((x, t)) 

both divide p by (1.0.2), hence if i(5) = p2, then i(5) = i(a) i((x, t)), and i(a) = 

i((x, t)) = p. This shows that A(5) ~ A(a) ® A(X , t) is a (split) decomposition. 

Conclude that if 0(5) = p and 0(5) ¢ i(5), then A(5) is decomposable. As a 

result, the (p2,p3) example above is the smallest possible. | 

If k is merely absolutely stable, and 5 is stepped, then by Definition 1.2, 

e(5)/~f(5), but the values of _c(5) and e(6) remain mysterious. However, if k 

is a number field, then by Theorem 1.3(vi), _c(5) = f(5) and e(5) = e(5). Thus 

for example (f(~), c(a)) in Lemma 2.1 is always equal to c(6). Theorem 2.2 gave 

necessary conditions on the decompositions of a given A(5). It will now be shown 

(as mentioned in Remark 2.2.3) by specializing to the case where k is a number 

field that Theorem 2.2 is best possible. 

THEOREM 3.3: Suppose 5 E Br(F)  has p-power index. Then A(5) is decompos- 

able i f  and only if p [c_(5). IRA(5) is decomposable, it is possib]e to characterize 

all existing decompositions in terms of local data. 

Suppose p [_c(5), and let n be a number such that n I c_(5). 

(i) I f  p i n ,  then there exists a nontrivial decomposition A(6) ~ A(51) ® A(52) 

with ~1 semiramified, i(51) = n, and e((~l) I e(52) (= e(5)). 
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(ii) If  e(6) = e(6), then there exists a nontrivial decomposition A(5) ~- 

A(51) ® 3(52) with e(61) = n, e(51) [e(52) (= e(5)), and 52 semirami- 

fled. 

All decompositions of A(5) fit the descriptions O) and~or (ii). Thus either the 

decomposition has a semiramified factor of index dividing c_(6), or e(5) = e(6) 

and there is a semiramified factor of index e(6) (or both). 

Proo~ Note if p/f_c(6), then A(6) is indecomposable by Lemma 2.1. 

The proof of the theorem starts with the following lemma on properties of a 

nontrivial decomposition of A(6) that  always exists when p ] c_(6). 

LEMMA 3.4: Assume the set-up of Theorem 3.3, with p[e_(6) and n a number 

such that  p [ n [ _e(6). Set 6 -- a q- (X, t). Let R be the set of primes of k over 

which 5 has maximal index (as in Lemma 3.1). Then 

(i) There exists a character Xl of order n satisfying 

n 
I(X - Xl)ql > i((a + (X, u))q) Vq E Loc(a + (X, u)), 

(3.4.1) 
for some u E k ,  with equality when q E R. 

(ii) For any Xl and u as in (3.4.1), the semiramified algebra A(X1, t /u)  appears 

in a decomposition of & That is, 

D(6) ~ A(X1 , t /u)  ® A(5--  (Xl, t /u)) .  

(iii) IRA(6) ~- 3(51)®3(52) is a decomposition of A(6) with 61 SR of index e(61) 

dividing e(52) , then e(61) ] e_(5), and 51 m ()~1, t/?A) for s o m e  unramified X1 

and u E k" satisfying (3.4.1). 

Proof." By hypothesis, p[_c(5), and since k is a number field, c_(5)[f(5) by 

Theorem 1.3(vi). As mentioned in the first paragraph of Lemma 3.1, p] f(5) 

implies R is finite. Therefore R is finite here. 

Proof of (ii): Suppose Xl satisfies (3.4.1). Obviously 5 = (X1, t /u)  + (6 - 

(Xl, t /u)) .  To prove this is a nontrivial multiplicative decomposition it suffices 

to show that  each factor is nontrivial, and that  

(3.4.2) i(5) = i((xi,  t / u ) ) ,  i(6 - (Xl, t /u)),  

i.e., that  the indexes are multiplicative. 
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It is immediate that (~(1, t/u) is nontrivial, since p i n  = i((xl,  t/u)) by hypo- 

thesis. By Theorem 1.3(i), c(5) ] e(5), so the assumption n ]_c(5) implies n ] e(5). 

If n < e(5), then since n = IXll, i X  - -  X l l - - - - I X I  ~--- e(5), by abelian group theory. 

CLAIM: I fn  = e(5), then also [X-Xll ---- e(5): For sincepl_c(5 ) (by hypothesis), 

e(bq) - ]Xql = 1 for all q in R by Lemma 3.1. Thus i ( ( a + ( X , u ) )  K<x">) = 

i((a + (X, u))q) Vq • R. This expression is the formula for residue index of 5 at 

q ([Re] (31.9)), which is f(5), since q • R. Therefore i((~ + (X, u))q) = f(5), so 

(3.4.1) becomes I(X - X1)ql = n whenever q is in R. But I (X-  X1)q[IIX - XI[, 

so this means n I IX - Xll, and by the claim's hypothesis, n -- e(5). Therefore 

e (5 ) ] lX -X l  I. Since [XI and IX1] both divide e(5), Ix-x~l ] e(5). Thus IX-X1[ = 
e(5), as claimed. 

Since 5 -- a + (X, t), an expansion shows that X - X1 is the character of the 

alleged decomposition factor 5 -  (X1, t/u) of 5. Thus e ( 5 -  (X], t/u)) = Ix-xxl = 

e(5), by the above. Since p I c__(5) and c(5) l e(5 ) (by Theorem 1.3(i)), e(5) is 

nontrivial, hence by Index Formula 1.1, 5 -  (X1, t/u) is nontrivial. It remains to 

demonstrate (3.4.2). Since i((x1 , t/u)) = n and e(5 - (X1, t/u)) = e(5), (3.4.2) 

reduces to 

(3.4.2) r f(5) = n . f ( 6 - ( x l ,  t /u)).  

By the local-global index formula, f(5 - ()~1, t/lt)) = SUpq{f((5- (X1, t /u)) ,)} ,  
where q ranges over all primes. By definition, f ( ( 5 -  (X1, t/U))q) is 

i((a + (X, u))~<(x-xl)")), which by the index formula for a local field ([Re] 

(31.9)) is max{l,  i ((a + (X, u))q)/lOc - X1)ql }. By (3.4.1), this number is 

less than or equal to max{1,f(5)/n} for all q E Loc(a + (X, u)), with equality 

if q • R. By hypothesis n ]_c(5), and so n If(6) by Theorem 1.3(vi). Therefore 

max{1,f(5)/n} -- f(5)/n,  hence f ( ( 5 -  (X1, t/u))q) <__ f(5)/n, with equality for 

q • R. Therefore by the local-global index formula, f(5 - (X1, t/u)) = f(5)/n.  

This establishes (3.4.2)', completing the proof of (ii). 

Proof of (i): In 

Ix, I >- 

(i.e., for all q at 

hypothesis), Ix, I 

[Br2] (Theorem 5.12) it is shown that 

_c(5) i((ct + (X, U))q) Vq • Loc(f(5). (a + (X, u))) 

which the index of a + (X, u) exceeds f(5)). Since n I_c(5) (by 

>- r - -~  i((a + (X, u))q) Vq • Loc(f(5) - (a + (X, u))). Therefore 
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the first part of (3.4.1) is satisfied whenever q E Loc(f(6) • (a ÷ ()~, u))) and 

I (~ -  X1)q I >-- IXq I. The difference set Loc(fp-~ • (c~+ (~(, u)))\Loc(f(6).  (~+  (~(, u))) 

consists of the primes at which the index of a + (X, u) is equal to f(6). At these 

primes, the first part of (3.4.1) becomes [(X - X1)q[ _> n. The remaining primes 

in Loc(a + (~(, u)) belong to Loc(a + (X, u))\Loc(fp-~ • (a + ()~, u))). At these q, 

i((a ÷ (X, u))q) < f(6), hence (3.4.1) is satisfied if [(~( - X1)q[ ~ n .  

The second part of (3.4.1) is satisfied if whenever q E R, ](X - X1)ql ---- 

r~) " i(((~ ÷ (X, u))q). By definition of R, f(6q) -- f(6) at such q. Therefore 

since f(6) ¢ 1 (shown above), ~ i ( ( a ÷  (X, u))q) -- [~(q[. By hypothesis, p [ c_(6), 

so by Lemma 3.1, IX.ql -= 1. Therefore for q E R, (3.4.1) is satisfied if and only if 

I(X1)ql -- n. 

Thus the proof of (i) boils down to finding a character X1 of order n such that  

(a) I(X - X1)ql >__-tXql when q E Loc(f(6).  (a + (X, u))), 

(b) [ (X-  X1)q[ ~ n when q E Loc(a + (X, u)) \Loc(f(6) .  (a + (X, u))), and 

(c) I(X1),I = n when q e R. 

Clearly (a) is satisfied if i(X1)ql = 1. If ]Xql < n (e.g. if q E R), then (b) and 

(c) are satisfied if I(X1)ql = n, by abelian group theory. If [X~I > n, then (b) 

is satisfied if I(X1)ql = 1. A character X1 of order n with these local orders at 

the (finite) set of primes in Loc(a + (X, u)) exists by the weak Grunwald-Wang 

Theorem ([AT] p. 105). This completes the proof of (i). 

Proof of (iii): Suppose A(5) _~ A(61) ® A(62) is a nontrivial decomposition of 

A(6), with 61 SR of index e(61), and e(61) [ e(62). Since 61 is SR, it has the form 

(X1, t /u) for some Xl and u E k'. By (2.2.1), e(61) le(62) implies e(61) Ic_(6 ). 

Therefore to prove (iii) it suffices to show X1 satisfies (3.4.1) with n replaced by 

e(61). 

By (2.1.4), f(62) = f(6)/e(61). Since 62 = 6 - 61 = a + (X, u) 4 (X - )C1, t/u), 
the formula for f(62) is f(62) = supq{1, i((a + (X, U))q)/[(X - X1)q[ }, where q 

ranges over all primes in the locus of a + (X, u). Setting these 2 expressions 

for f(62) equal yields the inequality [(X - X1)q[ > e_(~. i((a ÷ (X, u))q) Vq E 
- f ( ~ )  

Loc(a ÷ (X, u)). If there is equality Vq E R, then (iii) is proved. But if q E R, 

then (as noted previously) the hypothesis p lc(6) implies IXql = 1 by Lemma 3.1, 

hence [(X - X1)q[ : [(X1)q[, and f(6) = i((a ÷ (X, u)) K(x")) = i((a + (X, U))q). 

Therefore the inequality becomes [(X1)q[ -> e(61) -- [~1], and equality is forced. 

This completes the proof of Lemma 3.4. | 
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By Lemma 3.4(i) and (ii), p t c_(6) implies A(6) is decomposable. Since A(6) 

decomposable implies p [_c(6) by Lemma 2.1, this proves the first statement of 

the theorem. 
By Lemma 3.4(iii) the construction of Lemma 3.4(ii) exhausts the list of de- 

compositions of the form A(6) -- ,~(61) ® A(62) with e(61) ] e(62) and 61 SR. It 

remains to consider those decompositions (if they exist) where 61 is no t  SR. By 

Theorem 2.2, 62 is then SR. 

LEMMA 3.5: Assume the set-up of Theorem 3.3, with p I c(6) and n a number 

such that n[c(5),  but n ¢_c(6). Set 6 = a 4 (x, t). Let u E k" be such that 

cl/~(6, t) = e(6). Then 

(i) There exists a character X1 of order n satisfying 
?2 

(3.5.1) I(X1),] -> ~ i((a + (X, u))q) Vq • Loc(a + (X, u)) 

if  and only if  e(6) = e(6). 
(ii) For any X1 satisfying (3.5.1), A(6t) :---- A(6 -- (X -- X1, t /u))  is not SR, and 

it appears in a decomposition of A(6). That is, 

4 ( 6 )  4 ( 6  - (x  - Xl, t / u ) )  o n ( x  - Xl, t / y ) .  

(iii) I f  A(6) TM A(61)®A(62) is a nontrivial decomposition of A(6) such that 61 is 

not SR and e(61) [ e(62), then 61 = 6 - (X - X1, t /u)  for some X1 satisfying 

(3.5.1), and some u • k such that Cl/~(6, t) = ~(6) = e(6). Furthermore, 

e(61) [_c(6), e(61) ¢ fi(6), and the factor 62 is SR of index e(6). 

Proof Since k is a number field, _c(6) ] f(6), by Theorem 1.3(vi). Therefore the 

hypothesis p [_c(6) implies f(6) ¢ 1, and the hypotheses n [c_(6),n ~ c_(6) imply 

n [ f (6) ,n  # f(6). 
By Definition 1.2, ~(6) is the least common multiple of the various c~(6, t), so 

it is always possible to find a u • k such that c1/~(6, t) = e(6). 

Proof of (ii): Suppose X1 is a character of order n such that n [ c__(6), n ¢ _c(6), 

and (3.5.1) holds. Set ~1 : 6 - -  ( X  - -  ~ 1 ,  t/u). Expanding 6 yields 6~ = a + 

(~, U) ~- (X1, t/~t)~ and 6 - 61 : (~ -- )~1, t /u).  

CLAIM: The condition (3.5.1) implies that K(X1) C A(a  + (X, u)), 

i (a + (X, u)) = f(6), and c1/~(6,t) = e(6) = e(6). For by the local-global 

index formula and the formula for computing index over a local field, 

i (a + (X, u) K(z~)) = sup{l, i ((a + (X, u)),)/ l(X1),l  }. 
q 
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Applying (3.5.1) to this sup shows the sup is less than or equal to supq{1, f (6)/n }, 
and the latter equals f (5) /n  since n t f(6). Thus i((a + (X, u)) K(×O) <- f (6) /n  -= 

f(6)/]Xl[. On the other hand, 

f(6)/lx~l-- i((a+ (x, u))K<x>)/IXll <-- i(a+ (x, u))/lxll ___ i((a+ (x, u))K<xx>), 

by the basic theory. Therefore i((a + (X, u)) K(xO) = i(a + (X, u))/IXzl = 
i((o~ -[- (X, u))K{x))/IXI[" T h e  first of these two equalities shows K(X1) C 
A(a  + (X, u)), and the second shows i(a + (X, u)) = f(5). This proves the 

second part of the claim, and shows that cl/~(6, t) = e(6) by Theorem 1.3(ii). 

Since cl/~(6, t) = e(6) by hypothesis, ~(6) = e(6). This completes the proof of 

the claim. 
As always, the expression A(5) = A(61)® A ( 6 -  51) is a nontrivial 

decomposition of A(6) if and only if the factors on the right are nontrivial, and 

their indexes are multiplicative, i.e., if and only if 

(3.5.2) i(6) = i(61) • i((x - Xl, t/u)), 

and i(6x), i((x - X1, t/u)) # 1. By Theorem 1.3(i), _c(6) I IX [. Therefore, since 

n < _c(6), necessarily IXll < IXI (possibly IXlf = 1). Thus IX - Xll = IXI = e(6). 

Since i((x - X1, t/u)) = IX-Xll ,  (X - X1, t/u) is nontrivial, and (3.5.2) becomes 

(3.5.2)' f(6) = i(61), 

by Index Formula 1.1. Since f(5) # 1, establishing (3.5.2)' will also establish the 

nontriviality of 51. By the claim, f(6) = i(a + (X, u)). By Index Formula 1.1, 

i(61) = I•11 i((a + (X, u))K(×I)), and since K{X1 } C A(a + (X, u)) by the claim, 

i(61) = i (a+(X,  u)). Thus f(6) = i(61) ~ 1. Therefore A(6) _--_ A(61)®A(6-61) 

is a nontrivial decomposition. 

It remains to show 61 is not SR. This now follows from the hypothesis n = 

]Xll < fi(5): For by Theorem 1.3(vi), c_(6) I f(6 ) (since k is a number field), and 

it has just been demonstrated that f(5) = i(61). Therefore IXll = e(61) < i(61), 

hence f(61) # 1 by Index Formula 1.1. This completes the proof of (ii). 

Proof of (i): By the claim in the proof of (ii), the existence of a X1 satisfying 

(3.5.1) implies ~(6) = e(6). 

Conversely, suppose ~(6) = e(6). Condition (3.5.1) is satisfied by a character Xz 

of order n with local degrees I(X1)ql = f ~ "  i ( ( a +  (X, u))q) Vq 6 Loc (a+  (X, u)). 
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The weak Grunwald-Wang Theorem shows there exists a character of any order 

with a finite set of prescribed local orders, as long as the local orders divide 

the (global) order. Thus this Xl exists if f ~  • i((a + (X, u))q) < n Vq, i.e., 

+ (x, u ) ) , ) / f ( 5 )  < 1 

By hypothesis, cz/~(5, t) = e(5) = e(5). Therefore by Theorem 1.3(ii), 

i(a + (X, u)) = f(5). Consequently, by the local-global index formula, 

i ((a  + (X, u))q)/f(5) _< 1 for all q • Loc(a + (X, u)), 

as desired. This completes the proof of (i). 

Proof  of (iii): Suppose A(5) ~ A(51) ® A(52) is a decomposition of A(5), with 

5z not SR, and e(51) J e(52). Since 51 is not SR, 52 is SR by Theorem 2.2. By 

(2.2.1), e(52) = e(5), hence 52 is SR of index e(5), as claimed. 

By Theorem 2.2, e(5) --- e(5), as claimed, and i(51) = o(61) = f(5). Since 51 is 

not SR, its ramification index must be strictly less than its index, by Index For- 

mula 1.1. Therefore e(51) < i(51) -- o(51). By Lemma 2.1, (o(51),o(52)) [c(5), 

hence e(51) < _c(5), as claimed. 

It remains to show that the 51 in this decomposition has the form of part 

(ii), and satisfies (3.5.1). Let X1 be the character of 51. Since 52 is SR, 52 = 

( X - x l ,  t /u)  for some u • k ' .  Since 5 = a +  (x , t ) ,  51 = 5 -  52 = a -  

(X - X1, 1/u) 4 (?(, t) - (X - X1, t) = a + (X, u) 4 (X1, t /u).  By Lemma 1.4, 

the conditions i(51) = o(51) and 51 not SR together imply that K(X1} C 
A(a + (X, u)). Therefore f(51) ~ i((OZ -t- ()C, U)) K{?(1}) = i(Oz -I- (X, l t ) ) /e (51)  

by the general theory, and by Index Formula 1.1, i(51) = i(a  -t- (X, u)). By the 

above, i(51) = f(5), so i(a  + (X, u)) = f(5). 

Since i(a  + (X, u)) = f(5), Cl/u(5, t) = e(5) = e(5) by Theorem 1.30) and (ii). 

It remains to show that ~(1 satisfies (3.5.1). By the local-global index formula, 

i((a + (X, u)),) / l(x1),J <- f(51) Vq • Loc(a + (X, u)). By Index Formula 1.1, 

f(hz) = i(51)/e(51), and this is f(5)/e(51) by above. Thus 

i((a + (X, U))q)/J(X1)ql ~--- f(5)/e(51) Vq • Loc(a + (X, u)). Rewriting produces 

(3.5.1), and finishes the proof of the lemma. | 

CONTINUE PROOF OF THEOREM 3.3. By Lemma 3.4(iii) and Lemma 3.5(iii), 

it is possible to characterize all existing decompositions in terms of local data, 

namely the conditions (3.4.1) and (3.5.1): For by Lemma 2.1(i), every decom- 

position of A(5) has form A(5) -~ A(51) ® A(52) with e(51) [e(52). One of the 
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factors is SR by Theorem 2.2. If 51 is SR, then by Lemma 3.4(iii), the decom- 

position is accounted for by the construction of Lemma 3.4(ii). If 51 is not SR 

then by Lemma 3.5(iii), the decomposition is accounted for by the construction 

of Lemma 3.5(ii). This exhausts all possibilities. 

The proofs of (i) and (ii) of the theorem are immediate from Lemma 3.4(i) and 

(ii) and Lemma 3.5(i) and (ii), respectively. 

Finally, it remains to show all decomposition of A(5) fit the descriptions of 

(i) or (ii) of the theorem. It has been proved already that the constructions of 

Lemmas 3.4 and 3.5 exhaust the possibilities, so it suffices to consider only those 

constructions. But if a decomposition is produced by Lemma 3.4, then the factor 

61 of that  lemma is SR of index dividing _c(5), so it fits the description (i) of 

the theorem. If a decomposition is produced by Lemma 3.5, then the factor 62 

of that lemma is SR of index e(5). By 3.5(i), e(5) = ~(6), and by hypothesis, 

e(51) divides c__(5). Therefore this decomposition fits the description (ii) of the 

theorem. This completes the proof. | 

Remarks 3.5.3: (i) I f p .  f(5) < e(5) (so 5 is stepped), then there is a gap in the 

range of indexes assumed by the various semiramified factors. For by Theorem 

1.3(vi), p .  f(6) < e(5) implies e(5) = e(5) and _c(5) = f(5). Hence A(5) has 

a semiramified factor of index e(5) by Theorem 3.3(ii), and by Theorem 3.3(i), 

A(5) has semiramified factors of each index dividing c(5) = f(6). By the last 

statement of the theorem, this exhausts the possible indexes of semiramified 

factors. Therefore there are none with index strictly between f(5) and e(5). 

In terms of division algebras, this shows that there can be a gap in the range 

of indexes of semiramified F-subalgebras of a given (decomposable) F-division 

algebra. This contrasts with the situation for F-field extensions, where there is 

never a gap in the range of degrees of totally ramified subextensions. 

(ii) As mentioned above, this theorem acts as a compliment to the results of 

Section 2 by proving the existence of the decompositions allowed there. 

The next corollary lists the decomposability criteria proved so far. 

COROLLARY 3.6: Suppose 5 E Br(F)  has p-power index. Let R be the 

(nonempty) set of primes of k at which f(5) = f(hq). Then the following are 

equivalent: 

(i) A(5) is decomposable. 

(ii) A(5) properly contains a semiramified F-division algebra. 
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(iii) A(6) has a totally ramified subfield, but is not itself semiramified. 

(iv) p I c(6). 
(v) i(p~) ¢ ~ i(6). 

(vi) p[e((~) and e(~q) -- 1 Yq e R. 

Proof: The equivalence (i)~=~(iv) is stated in the theorem. The implication 

(i)~(ii)  follows by Theorem 2.2, which says one of the factors in any nontrivial 

decomposition of A(5) is SR. If A(/~) has a proper SR F-division subalgebra, then 

obviously it is decomposable and has a TR F-subfield. Moreover, SR algebras 

are indecomposable, since they have equal period and index, so A(6) cannot itself 

be SR. Therefore (ii)~(iii). If A(5) has a TR subfield, then p] e(5) by Definition 

1.2. If in addition A(~) is not SR, then since plY(5), p]c_(5) by Theorem 1.3(v) 

and (vi). Therefore (iii)~(iv), and so (i) (iv) are equivalent. If p]cc_(5), then 

p I f(5) by Theorem 1.3(vi), hence by Claim (2.1.2), i(ph) = ~ i(~). Therefore 

( iv)~(v) .  Conversely, by (2.1.3) multiplication by p drops the index of 5 by 

either p or p2. By Claim (2.1.2) again, i(ph) = ~ i(5) implies p l_c(/~). Therefore 

(v)~( iv) .  The equivalence ( iv)~(vi)  is Lemma 3.1. | 

The next corollary explicates the connection between decomposability and 

unequal period and index over F. 

COROLLARY 3.7: Suppose D/F has p-power index. Then 

i(D) ¢ o(D) ¢==~ D °n is decomposable for some n. 

Proof: The forward implication follows from the observation that if i(D) > 

o(D),  multiplication by some m must reduce the index by more than m. Letting 

np be the minimal such m (necessarily np[o(D)), find that i(D °np) = ~ i (D°~),  

hence D °n is decomposable by Corollary 3.6. 

For the reverse, note that  if D °n is decomposable, then D °n is nontrivial, and 

i(D On) > o(DOn). By (2.1.1), i(D) ~ ni(D®n), and since o(D) = no(DOn), 

this implies i(D) > o(D). | 

Remark 3.7.1: This corollary gives a type of explanation for index behavior 

over F that deviates from period behavior. For suppose D --- D1 ® D2 is a 

nontrivial decomposition. By dimension count, i(D) = i(D1)i(D2), while by 

abelian group theory, o(D) llcm{o(Di),o(D2)}. Since period divides index, 

lcm{o(D1),o(D2) }llcm{ i(D1), i(D2)}, and since O1 and 02  are nontrivial, 

lcm{ i(D1), i(D~)} < i(D1)i(D2). Therefore when D is decomposable, o(D) < 
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i(D) is forced by the basic theory. If D ®~ is decomposable, not D, then by 

(2.1.1), which is also part of the basic theory, again o(D) < i(D) is forced. In 

this way decomposability provides an explanation for unequal index and period 

in terms of the basic structure theory of division algebras. By Corollary 3.7, no 

other explanation is needed over F. 

When X(k)  has elements of all orders (i.e., k has cyclic extensions of all de- 

grees), as is the case when k is a number field, every totally ramified F-extension 

is maximal in some semiramified F-division algebra. For every totally ramified 

extension of degree n has form F(~/-U-t) for some u E k', and if X E X(k) is a 

character of order n, then F(~/-U-t) is a maximal subfield of the division alge- 

bra A(XF, ut). The next result shows that this link between totally ramified 

F-extensions and semiramified F-division algebras endures with respect to con- 

tainment in division algebras. That  is, existence of a totally ramified F-subfield 

of a given D is equivalent to existence of a semiramified F-subalgebra of D. On 

the other hand, Corollary 3.9 shows it endures in a weak form: Not every totally 

ramified F-subfield is contained in a semiramified F-subalgebra. In both corol- 

laries it is convenient to use the language of division algebras rather than that  of 

Brauer elements. 

COROLLARY 3.8: An F-division algebra D of p-power index contains a totally 

ramified F-extension if  and only i f  it contains a semiramitied F-division algebra. 

Proo~ If D contains a nontrivial SR F-division algebra, then it contains the 

(nonempty) set of TR F-extensions of that algebra. Conversely, if D contains a 

TR F-extension, then it may be SR, in which case D (trivially) contains a SR 

F-division algebra. If D is not SR, then it then contains a SR division algebra 

by Corollary 3.6. | 

COROLLARY 3.9: Let D be an F-division algebra of p-power index. 

(i) Every totally ramified subfield o l D  of degree n is contained in a semirami- 

tied subalgebra o l D  if and only if  n l f (D),  n = e(D), or D is semiramitied. 

(ii) Suppose E is a totally ramified subfield of D of degree n. Then E is 

maximal in a semiramified subalgebra if  and only i f  n I f (D)  or n = e(D). 

Proo~ Let E be a TR subfield of D of degree n. Since n is already the degree 

of a TR subfield, n l_c(D ) is equivalent to n l f (D):  The forward implication 

is immediate, since by Theorem 1.3(vi), _c(D) If(D) when k is a number field. 

The reverse is clear if _c(D) = f(D),  and by Theorem 1.3(v), if _c(D) < f (D)  
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then c_(D) = ~(D), hence all TR subfields have degree dividing c_(D) since by 

Definition 1.2 they all have degree dividing ~(D). 

By Lemma 2.1(i), all SR F-subalgebras of D have index dividing _c(D) and/or  

index equal to e(D). Therefore by the basic theory, a maximal E must have 

degree dividing _c(D) or degree equal to e(D). This is equivalent to n If(D) 

or n = e(D), by the remarks of the first paragraph. This proves the forward 

implication of (ii). 

By Lemma 3.4, D has a SR factor A(X, t/u) of any index m dividing c_(D), for 

any u E k .  Since A(•I, t/u) has maximal subfield F ( ~ / ~ )  and all TR exten- 

sions are of form F ( ~ / ~ )  for some u E k ,  this proves the reverse implications 

of both (i) and (ii) in the case n I e_(D), hence in the case n If(D) by the remarks 

of the first paragraph. 

The reverse implication of (i) for D SR is trivial. 

To prove the rest of the reverse implications of (i) and (ii), suppose n = e(D). 

Then since D has a TR subfield (E) of degree e(D), e(D) = e(D) by Definition 

1.2, hence by Lemma 1.4 and proof, D has a decomposition D ~- A ® A(X, t) for 

some (possibly trivial) unramified A and some choice of uniformizer t. Suppose 

E = F ( r ¢ ~ ) ,  u E k .  It is shown in [Br2] (Lemma 3.4) that since [E : F] = 

e(D), E C D if and only if u E N(f(D) • X). On the other hand, the similarity 

D ~ (A ® A(X, l /u) )  ® (A()~, ut)) is an isomorphism, hence a (split) decompo- 

sition if and only if i(A ® A(X , i /u))  = f(D), since i((x, ut)) = e(D). Since 

D ~ A ® A(?(, t), already i(A) = f(D), and always f(D) I i(A ® A(X, t/u)). 
Therefore i(A ® A(X, l /u) )  = f(D) if and only if i(A(x , 1/u))lf(D), i.e., 

A(f(D) • ~2, I/u) ~ F. By the basic theory, this is equivalent to u E N(f(D)- ~(). 

The conclusion is F ( ~ / ~ )  C D implies A(X, ut) C D, which proves the rest of 

the reverse implications of (i) and (ii). 

It remains to prove the forward implication of (i). Suppose n Xf(D) and n ¢ 

e(D), and E is TR of degree n. 

CLAIM: E is contained in a TR subfield of degree e(D) if and only if E is 

contained in a SR subalgebra. If E is contained in a TR subfield L of degree 

e(D), then by the reverse implication of (i), E is contained in a SR subalgebra 

of D, namely the one containing L. Conversely, if E is not contained in a TR 

subfield of degree e(D), then E is not contained in any SR subalgebra of D: For 

if it was, then the degree of the SR subalgebra would necessarily be of index 

e(D), since there are no SR subalgebras of index strictly between f(D) and e(D) 
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by Theorem 3.3, and already n/~f(D).  Therefore since the degree of E is strictly 

less than e(D), E would not be maximal. But in [Br2] (Proposition 5.5), it 

is proved that, all TR subfields of a SR division algebra are contained in TR 

maximal subfields. Therefore E would be contained in a TR subfield of degree 

e(D), a contradiction. 

Thus the TR subfields of degree n ~(f(D) not contained in SR subalgebras are 

exactly those not contained in TR subfields of degree e(D). There is a natural 

inclusion of the set of isomorphism classes of TR subfields of D of degree n that  

are subextensions of subfields of degree e(D) into the set of isomorphism classes 

of TR subfields of D of degree n. It is shown in [Br2] (Proposition 4.2) that  the 

cokernel of this set map is an orbit of the group N(f(D). [)k "n/f(D)/N(f(D). x ) k  n 

(note f(D) I n by hypothesis). By Prop. 5.14 of [Br2] this group is trivial if and 

only if D is SR (this uses k a number field). The conclusion is that  if n ~f(D),  

n # e(D), and D is not SR, then there exist TR subfields of degree n that  are 

not contained in any SR subalgebra. This completes the proof of (i). | 

Remark 3.9.1: By Corollary 3.9, every TR subfield of D is contained in a SR 

subalgebra if and only if D is stubbed (~:(D) I f(D)), or D is stepped (~:(D) X f(D)) 

and e(D) = p .  f(D). Moreover, the corollary shows that every TR subfield is 

contained in a SR subalgebra if and only if every TR subfield is m a x i m a l  in 

some SR subalgebra. 

Finally, an observation regarding the number of distinct subalgebras of a de- 

composable F-division algebra D. 

COROLLARY 3.10: I f  an F-division algebra D of p-power index has a proper non- 

trivial F-division subalgebra, then it has infinitely many nonisomorphic 

F-division subalgebras, ranging over all indexes dividing the index of D. 

Proo~ In the proof of Lemma 3.4(i), the Grunwald-Wang Theorem was used to 

prove the existence of a character X1 with a (finite) set of prescribed local orders. 

By including additional irrelevant primes in this set, it is possible to produce an 

arbitrarily large number of d i s t inc t  characters X1 that all satisfy (3.4.1) (but 

differ at the irrelevant primes). This modification to the proof shows there are 

infinitely many distinct characters such that the SR F-division algebras D1 = 

A(X1 , t) are subalgebras of D. The injection X(k) ~-~ Br(F) shows that these 

distinct characters produce distinct Brauer elements ()C 1, t), hence nonisomorphic 

D1. 



Vol. 96, 1 9 9 6  DISCRETELY HENSELIAN DIVISION ALGEBRAS 169 

The semiramified factor 61 described in Theorem 3.3(i) assume all values 

dividing _c(5). Hence 51 and 52 together assume all values dividing i(5). | 

4. T h e  r e c i p r o c a l  p r o b l e m :  e m b e d d a b i l i t y  

As in the last section, let k be a number field, and let F be a rank one discretely 

Henselian field with residue field k. If D is an F-division algebra, then D is 

decomposable if and only if it has a proper F-division subalgebra, as indicated 

in the discussion on decomposability in §1. Thus all of the results so far can be 

interpreted as results on the existence and structure of the division subalgebras 

of a given F-division algebra. The results in this section concern the reciprocal 

problem of existence and structure of the F-division algebras that  (properly) 

contain a given F-division algebra. 

By Theorem 2.2, there are at most 2 nontrivial factors in any decomposition 

of a given F-division algebra D of p-power index. Thus any proper F-division 

subalgebra is maximal, and if D is already decomposable, then it cannot properly 

embed in an F-division algebra of p-power index. If D is indecomposable, such an 

embedding might exist. In this section it is shown that  "usually" it does. First it 

is shown that  all semiramified F-division algebras D embed with all of the latitude 

allowed by the final statement of Theorem 3.3, and Remark 3.5.3(i). This result 

compliments the result proved earlier that a decomposable F-division algebra (of 

p-power index) always contains a semiramified D (Theorem 2.2). Then the main 

theorem of the section is proved, that all indecomposable F-division algebras of 

p-power index embed properly in some F-division algebra of p-power index if and 

only if there holds a proviso involving the Special Case of the Grunwald-Wang 

Theorem. (See §1 for background on the Special Case.) 

As usual, Brauer elements will be  used to analyze the problem, which then has 

the form: Given an element e E Br(F),  does there exist an element (5 such that  

i(6) = i(e) i ( 6 -  e)? 

THEOREM 4.1: Let ¢ ~ X(F )  be unramified and nontrivial of p-power order. 

Then there exists an element 5 E Br(F)  of p-power index such that A(5) 

A(~,  t) ® A ( 5 -  (~, t)) is a nontrivial decomposition. Such 5 exist with all indexes 

strictly divisible by I~bl, and with all ramification and residue index combinations 

allowed by Theorem 3.3. That is, with either e(5) = [~/~1 and f(5) arbitrary (but 

nontrivial), or e(5) and f(6) both divisible by I~l. 
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Proof: Suppose A(6) ~ A(¢,  t) ® A(6 - (¢, t)) is a decomposition. If (¢, t) as- 

sumes the role of 62 in Theorem 3.3(i) or (ii), then e(6) = ]¢[ (since e(6) = e(62)), 

and there are no a priori restrictions on f(6) except that it be nontrivial. If 

(¢, t) assumes the role of 61 in Theorem 3.3, then necessarily ]¢1 ]e(6) (since 

e(61) le(62) = e(6)), and [¢11f(5) (since [¢[[c_(5) and _c(5)[f(5) by 

Theorem 1.3(vi)). Thus the ramification and residue index combinations al- 

lowed by Theorem 3.3 are either e(6) = I¢[ and f(6) arbitrary (but nontrivial), 

or e(6), f(6) any numbers both divisible by [¢[. 

It is simple to construct a 6 in the first case: Let a be unramified of index any 

number f(6) divisible by p, and with ramification locus disjoint from the locus of 

¢. This is possible by Cebotarev's Density Theorem ([Ne]), which says there exist 

infinitely many primes not in the locus of ¢, and by Hasse's Theorem. Let 6 = 

a4- (¢ ,  t). Then i(a K(¢)) = f(6) = i(a) by the local-global index formula, hence 

i(6) -- i(a)i((~p, t)) by Index Formula 1.1. Therefore A(6) -- A(a)  ® A(¢,  t) is 

a (split) decomposition, of ramification index e(6) = [¢[ and residue index f(6) 

any number divisible by p. 

The remaining case will follow from the following slightly more general result, 

which will be used in §5 to produce examples of decompositions. 

LEMMA 4.2: Let ¢ be a nontrivial character of order n a p-power. Select p-power 

numbers 

f :  nl(e,$ ) a :  Sial 
n (4.2.1) an 

Then there exists an element 6 = a 4 (X, t) E Br(F)  of p-power index, with 

nontrivial decomposition 

A(6)  = t) ® - (¢ ,  t)) 

such that e(5) = e(6 - (¢, t)) --- e, f(5) = f ,  i(a) = a, and e(hp,) = %,. 

Proof: By Cebotarev's Density Theorem, there exist two primes ql and q2 at 

which ¢ has maximum order n, and two other primes Pl and P2 not dividing 2 

where ¢ is split completely. Let a E Br(k) have ramification locus {ql, q2, Pl, P2}, 

index f and opposing invariants at ql and q2, and index a and opposing invariants 

at Pl and P2. This is allowed by Hasse's Theorem. Since f I a by (4.2.1), i(a) = a, 
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as desired. Now let Xq, (i = 1, 2) be two trivial characters,  and let Xp~ (i = 1, 2) 

be two characters of order ep,. Since ep~ divides e (by (4.2.1)), there exists by 

the Grunwald-Wang Theorem a character  X of order e with the Xp, and Xq, as 

completions (there is no Special Case since the primes Pl do not divide 2). 

Now let 5 = c~ ~- (X, t). Then  e(5) = e and e(Sp~) = ep~, as desired. 

CLAIM: A(5) ~ A(¢ ,  t) ~) A(5-- (X, t)) is a nontrivial  decomposition. As usual, 

it suffices to prove 

(4.2.2) i (5)  = i ( ( ¢ ,  t ) ) .  i(6 - (x ,  t)) .  

The  character  of 5 - (~, t) is X - ~P, and the unramified par t  with respect to t is 

(l. 

Since IXI = e and I~bl = n, IXI > I¢1 by (4.2.1). If IXI > I¢1, then I X -  ¢1 = 

e(5 - (X, t)) = e. If IXI = I~/'1, then since X is trivial and ¢ has full order n at  the 

q~, (X-¢)q~  = - ¢ q , ,  and both  have order e. Hence in any case, e ( 5 -  (X, t)) = e, 

as desired. Therefore by (2.0.1), to prove (4.2.2) and the rest of the lemma it 

remains to show f(5) - i (a  K(x>) = f ,  and tha t  f = n .  f(5 - (X, t)). 

By construction,  i(c~ K(~"~>) -- f ,  and by local class field theory, i ( c ~  (Xp'>) = 

max{1,a/ep,}. Since (a/f) lep~ (by (4.2.1)), (a/ep,)l f. Therefore by the local- 

global index formula, i(c~/'(x>) = f .  It remains to show f(5 - (X, t)) = f/n. 
By construction,  Xq~ - ~Pq~ = Cq~, and Xp, - Cp~ = Xp~, so i (a  K(×-~))  = 

max{  i(aK(x'~)),  i(a~(¢"~))}. By construct ion this is max{aleph, f/n, 1}. But  

by (4.2.1), a/ep~ l f in  and 1 <_ fin. Therefore i (a  K(x-e) )  - f ( 5 -  (X, t)) = fin. 
This proves the claim, hence the lemma. | 

C O N T I N U E  PROOF OF THEOREM 4.1. It remains to show tha t  the construct ion 

in Lemma 4.2 will yield a 5 with any e(~) and f(6) bo th  divisible by I¢1 = n. But  

this is immediate ,  since the ~ constructed was shown to have invariants e(~) -- e 

and f(5) = f ,  and e and f were selected arbitrari ly such tha t  n] (e, f )  by (4.2.1). 

This completes the proof. II 

Remarks 4.2.3: (i) The  theorem supports  an analogy between F-field extensions 

and F-division algebras: Just  as a total ly ramified F-field extension of degree 

n embeds in F-field extensions of all degrees divisible by n, a semiramified F-  

division algebra of index n embeds in F-division algebras of all indexes divisible 

by n. On the other  hand, as pointed out in Remark 3.5.30), the larger F-field 

extension can have any ramification index divisible by n, and any residue index, 
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whereas Theorem 3.3 puts stricter limitations on the corresponding invariants of 

the larger division algebra. 

(ii) By Theorem 2.2, every decomposable F-division algebra (of p-power index) 

has a proper semiramified subalgebra. By the above, every semiramified F-  

division algebra of p-power index is a proper subalgebra of an F-division algebra 

of p-power index. 

(iii) In §5 the parameters a, f ,  ep~, and e of Lemma 4.2 will be manipulated to 

produce examples of decompositions. 

The main theorem of the section is next. 

THEOREM 4.3: Every indecomposable F-division algebra of p-power index em- 

beds properly in some F-division algebra of p-power index if  and only i f  for every 

prime q of k, every local character Cq C X(kq) has a Grunwald lift. In particular, 

if  p is odd, or i f  p = 2 and k has no Special Case, then every indecomposable 

F-division algebra properly embeds. 

Proof'. Suppose every local character has a Grunwald lift. Let A(6') -~ A ( a  4- 

(X', t)) be indecomposable, for some unramified c~ and character X', all of p-power 

order. To prove the reverse implication it suffices to construct a 6 E Br(F)  such 

that  i(6) = i(6 - 6 ' ) .  i(6'). This has already been accomplished if 6' is SR (in 

Theorem 4.1), so assume that  6' is not SR. 

If 6' is unramified, so 6' = a, let X be any nontrivial character that is trivial at 

all primes q at which a takes maximal index. By the Grunwald-Wang Theorem, 

such a character exists, of any order divisible by p. Let 6 ---- a 4- (X, t). Then 

i(6) = i(aK(x)),  i((x, t)) = i (a) .  i((x, t)), so A(6) -- A ( a ) ® A ( x  , u) is a (split) 

decomposition, with A(6') = A(a) a factor. (This is the on ly  way an unramified 

clement may appear as a factor in a decomposition, since by Theorem 2.2 the 

complimentary factor must be SR.) 

Now assume 6' is neither unramified nor SR. Thus p ] (f(6'), e(6')). Since A(6') 

is indecomposable, by Corollary 3.6 there exists a prime q of k at which f(6 ~) = 

f(6'q) and p]e(6'q). Set Cq = -X'q at this q. By hypothesis Cq has a Grunwald 

lift, so let ¢ be a character of order e(6'q) and with completion Cq at q, and with 

trivial completion at some other prime where X' has full order e(6'). Such a prime 

exists by Cebotarev's Density Theorem ([NED, which shows there are infinitely 

many primes at which X t has full order. Let ) / =  !b + ;~", and 6 = a 4 (X, t). 
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CLAIM: Z~(5) ----- A(5 - 6') ® A(6') is a nontrivial decomposition, i.e., i(5) = 

i(5 - 5 ') .  i(5'). Here, 5 - 5' = (¢, t). Since I¢1 = e(5~q) -< [X'I and ¢ is trivial 

at a prime where X' has full order, tgt = [¢ + X'I = Ix'l- Therefore it suffices to 

prove f(5) = [¢1" f(5'), by (2.0.1). 

By construction, Xq = 0 at the chosen prime q, hence i(a K{x")) = i(aq). 

Since f(5') = f(5~q) (by choice of q) and f(5') ¢ 1 (by hypothesis), the formula 

for residue index shows that  K(X~q) does not split aq, hence by local class field 

theory, i (a , )  IX'q] "" /~(x")" K(x',)) = • ,kc~q ). Thus, since Ix',l :-I¢1, i(c~ = I ¢ l  f(5'). 

If i(~ y(x~)) < l e t  f(5') at all p ~ q, then the claim is proved by the local- 

global index formula. But if Ixpl ___ IxGI, then i ( ~  <~'>) _< i ( ~  <~;>) < f(5'). 
y(~'p>) 

If IX,] < IX~I, then since X0 = Cp + X~, IX~I = I¢,1. Since i(a < f(5'), 

necessarily i(ao) < IX~I" f(5'), hence i(a K(xp)) < IX~I" f(5'), hence i(a K(x')) _< 

I¢01" f(5') < [¢1" f(5'). This establishes the claim, and completes the proof of 

the reverse implication of the theorem. 

If k has a Special Case, then the above construction of the element 5 snags  
I when -Xq has no Grunwald lift. The forward implication of the theorem consists 

of a demonstration that  things can be arranged so that  no remedy is possible. 

The counterexample 5 ~ will necessarily be of 2-power index, with character X ~ of 

order divisible by 2 ~+1, where s is as in the discussion of the Grunwald-Wang 

Theorem in §1. 

Let q be a prime and let X~q be a character of order m a 2-power such that  -X~q 

has no Grunwald lift (necessarily 812~+1 Ira). Let p be a prime not dividing 2, 

be a character of order 2m. Let ?(' be a (global) character of order and let Xp 

" and " 2m with Xq X0 as completions. This exists by Grunwald-Wang. Let ff  be 

a 2-power divisible by m (hence by 8). By Hasse's Theorem, there exists an 

element c~ E Br(k) of index mr' whose ramification locus consists of p and q. Of 

course, then invq(c~) = -invo(c~), where inv is the invariant map ([Re] Ch. 32). 

Let 5' = a 4 (X', t). Then e(5') = 2m, and f(5') = i(c~K(x')) = i ( , ~  (x;)) = 

m f ' / m  = f' .  Since e(6'q) # 1 and f(5'q) = f(5'), A(6') is indecomposable by 

Corollary 3.6. 

CLAIM: A(5 I) c a n n o t  be a part of any decomposition. This result will prove 

the theorem. 

Suppose otherwise, i.e., that  A(6) = A(5-6 ' )®A(6 ' )  is a decomposition. Let X 

be the character of 5. Since 5' is not SR (f(5') = f '  is divisible by 8), 6 -5 '  must be 
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SR by Theorem 2.2. Therefore 6-6' = (¢, t/u), for ¢ := X-X' and some u C k' .  

Since 6' = a + (X', u) 4 (X', t/u), solving for 6 yields 6 = a + (X', u) 4- (X, t/u). 

I r e ( 6 - 6 ' )  > e(6'), then by Lemma 2.1 both e(6') and e ( 6 - 6 ' )  divide e(6), and 

e(6 - 6') = e(6). Since 6 - 6' is SR, this means there exists a TR subfield of A(6) 

of degree e(6), hence ~(6) = e(6) by Definition 1.2. Thus by Theorem 2.2(ii), 

with 6' assuming the role of 61, f(6) = i(6') = 0(6'). Since 6' is not SR (8 1 f ' ) ,  

i(6') = i (a  + (X', u)) by Lemma 1.4. But this equation is false: By Index 

Formula 1.1, i(6') = IX'I" f(6') = 2mr', while by construction, i(a) = mr'. 
Since I~:'l = 2m, and 8 I f ' ,  IX'I < i(a),  hence, since k is absolutely stable, 

i (a  + (X', u)) = i(a).  Hence i (a  + (X', u)) = mff. Since 2mr' ¢ mf', this is a 

contradiction. The conclusion is e(6 - 6') < e(6') = e(6). 

Since e(6) = e(6') and 6 - 6' is SR, f(6) = e(6 - 6')f(6') by (2.0.1). Since 

X' has order e(6') = 2m, and e(6 - 6') < e(6'), e(6 - 6')lm. Since A(6) ----- 

A(a + (X', u)+ (X, t/u)) is decomposable by hypothesis, by Corollary 3.6 there 

exists a prime q' e L o c ( a +  (X', u)) at which f(6q,) -- f(6), and e(6q,) _= IXq'I = 1. 

Since IXq'l = 1 and X = ~b + X', I~q'1 = Ix'q,J. Since I~q' l ]J¢l -= e ( 6 -  6') 

and e ( 6 -  6') = f (6) / f (6 ' )  < f (6 ) (81 f (6 ' ) ) ,  necessarily J¢q'l < f(6), hence 

[X~q,I < f(6), hence i((x' ,  U)q,) < f(6). The equalities f(6q,) = f(6) and IXq'l = 1 

together imply i ((a  + (X', U))q,) = f(6). Since i((.X', u)q,) < f(6) and kq, is 

absolutely stable, this forces i(aq,) = f(6). Consequently, q' E Loc(a) .  

Since q' E Loc(a) ,  it is either p or q. But it can' t  be p: For IX~I = IX'] by 

construction, and as already shown, [X'[ > [5'1- Therefore [X~[ > [¢pI, hence 

IX~I = IXpl, and in particular, IXpl ¢ 1. Therefore X must be split completely at  

q, and so -X~q = Cq. By construction, I -  X~[ = m,  so lCql -- m.  Always  ICql [ ICl, 
and by the above, I~1 - e(6 - 6') Ira, so this forces I~] = m. But  then ~b is a 

Grunwald lift of ¢q = -X~q. By hypothesis, no such lift exists! This proves the 

claim, and completes the proof of the theorem. | 

COROLLARY 4.4: For certain number fields k there exist indecomposable F- 

division algebras of 2-power index that do not properly embed in any F-division 
algebras of 2-power index. 

Proo[: By the theorem, it suffices to find a field with IS01 = 1. For example, if 

k = Q, the unramified character of order 8 at the prime 2 has no Grunwald lift 

([AT], Ch. X). | 
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Remark  4.4.1: It should be possible to produce a local criterion tha t  decides ex- 

actly when a given indecomposable F-division algebra of 2-power index divisible 

by 2 ~+1 embeds properly in a F-division algebra of 2-power index. 

5. E x a m p l e s  o f  d e c o m p o s i t i o n s  

In this section, the construction of Lemma 4.2 is manipulated to produce some 

examples of decompositions with interesting features. These occur over the rank 

one discretely Henselian field F,  with residue field k a number field. 

LEMMA 5.1: Let  5' be a nontrivial character of  order n a p-power, and Let  ~ be 

as constructed in L e m m a  4.2, with f = f(5), a = i(a),  ep~ = e(fp~), and e = e(6). 

Let  A(5) ~ A(~/,, t) ® A(6 - (¢,  t)) be the decomposition of  n e m m a  4.2. Then 

(i) 6 - (~,, t) is semiramified i f  and only i f  n = f . 

(ii) f I c(5) i [and  only i f  f = a I e or a l ep~. 

(iii) A(5) has a split decomposition i[ and only i[ f = a or a [ ep,. 

Proof: The factor 5 - (~p, t) in Lemma 4.2 is SR if and only if i(~ - (¢, t)) = 

e(6 - (¢, t)). Since i(6) = i((¢, t ) ) .  i(6 - (~b, t)) and e(5 - (¢, t)) = e(5), 

6 - (¢, t) is SR if and only if f(5) = i((¢, t)), i.e., f = n. This proves (i). 

By Theorem 1.3(vi), f I c_(6) if and only if f(6) = c_(~). By Theorem 1.3(v), to 

show f(6) = c_(5) is equivalent to showing f(5)I c1(5 , t) (see Definition 1.2 for the 

definition of cu(6, t) ). 

Let T ~ = Loc(f(~) • (a + (X, l /u ) ) ) ,  u e k ,  where ~ is as in Lemma 4.2. Thus 

T ~ is the locus of primes at which a + (X, 1/u)  has local index greater than  the 

global residue index f(5). By Theorem 5.12, [Br2], either T u = ~,  in which case 

c~(~,t) = e(5) = e(6), or else T ~ ¢ 0 ,  and then 

(5.1.1) c~(5, t) = ra in{  f (~) .e(hq)  } 

If u = 1, then T ~ = Loc(f (5) .  a) .  Thus if f(5) = i(a) in Lemma 4.2, then 

T 1 = g ,  and f [ c(5) if and only if f(6) [ e(5), i.e., f ( =  a) [e .  

If f(5) < i(a) ,  then T 1 = {Pl,P2}: For by construction, Loc(a)  = 

{Pl,P2, ql,q2}, i (ap~)= i(a) ,  and i (aq~)= f(~). Hence i ( f ( 5 ) . a p , ) =  i ( a ) / f ( 5 )  

and i(f(6) ,  aq,) = 1, hence noc(f(5) ,  a) = {Pl, P2}. In this case, (5.1.1) becomes 

c1(6, t) = f (6) .  e(6p~)/ i(a) .  Therefore when f < a, f I c_(5) if and only if a l ep~. 

If i(a)le(~p~),  then f (5) le (5) ,  since always f(~)] i(a) and e(~p~)le(5). 

Therefore a l ep~ implies f I c(6) in any case. This completes the proof of (ii). 
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By Lemma 1.4, A(6) has a split decomposition if and only if f(5) ¢ 1 and 

g:(5) = e(5). In Lemma 4.2, p ln l f (5 ) ,  so f(5) ¢ 1. If f(5) [_c(5), then by 

Theorem 1.3(vi), ~(5) = e(5), hence A(5) has a split decomposition in this case. 

If 5 is stubbed, then _c(~) = ~(~) by Theorem 1.3(v), so ~:(~) -- e(5) if and only 

if Cl(~,~ ) = e(~). If T 1 = O, i.e., f(5) = i(t~), then Cl(5, t) -= e(6) by the 

above, so there is a split decomposition in this case. If T 1 ¢ o ,  so f(6) < i(a), 

then by the computation above, c1(6, t) = f(5)e(~p,)/ i(a) .  Since f(5) < i(a) 

and e(bp~)le(~) by (4.2.1), Cl(5, t) = e(5) is impossible. Conclude, using (ii), 

that if f(6) = i(c~) le(6 ) o r  i(a) le(6p~ ) (the case f 1_c(5)) then A(5) has a split 

decomposition, and if f((~) = i(c 0 ~e(~p,) (the stubbed case) then A(5) has a 

split decomposition also. Therefore if f = a or a ] ep~, then A(6) of Lemma 4.2 

has a split decomposition. 

Conversely, suppose f < a and a ~ep~. Then by (ii), 5 is stubbed, hence 

Cl(5, t) = e(~) by Theorem 1.3(v). As above, T 1 # ~ and Cl(5, t) = e(~) is im- 

possible. Therefore e(5) ~ e((5), hence A(a) does not have a split decomposition. 

This proves (iii), and finishes the proof of the lemma. | 

Using this result, it is possible to manipulate the parameters in Lemma 4.2 to 

produce decompositions with various features. A few examples the author did 

not expect appear in the next corollary. 

COROLLARY 5.2: 
(i) There exists an F-division algebra D with nontrivial decompositions 

(5.2.1) D -~ A ® A(X, t) TM A(X1, t) ® A(X2, ut) 

where A is unramified, X, X1, and X2 are unramified characters, and u G k .  

That is, D has a split decomposition into an unramified factor and a semi- 

ramified factor, and also a decomposition into 2 semiramified factors. 

(ii) There exists a stubbed F-division algebra D that has a split decomposition. 

Hence 

(iii) 

(5.2.2) D -~ A ® A(X, t), A unrnmified 

and D contains every totally ramified F-extension of degree dividing 

e(D) = I x l -  

There exists an F-division algebra D that has a decomposition 

(5.2.3) D = A(¢, t) ® D' 
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such that D' has no totally ramified subfield, and D has  totally rami-  

fied subfields of degree strictly larger  than those of  the semiramified factor  

A ( ¢ ,  t). D can be either stepped or stubbed. 

Proof." Let ~ be a nontr ivial  character  of order n, and let D -- A(A ® A(~,  t)) 

be the division a lgebra  represent ing the element ~ const ructed f rom ~ in L e m m a  

4.2. Set n = I ,l, e -- e (D) ,  f --- f (D) ,  a = i(A), e = e (D) ,  and ev~ = e(hp,), as 

in L e m m a  4.2. 

By  Index  Formula  1.1 and definitions, D has the split  decompos i t ion  

A ® A ( ; ~ , t )  if i (d )  = f (D) .  By L e m m a  4.2, D == A ( ¢ , t ) ® A ( a -  ( ¢ , t ) ) .  

Since i ( (¢ ,  t)) - n, the second factor is SR if and only if e(a  - (~b, t)) = i (5) /n .  

By  L e m m a  4.2, e(~ - (¢,  t)) = e(6), so this occurs exact ly  when f(5) = n, by 

Index Formula  1.1. 

The  condit ion .n = a = f does not violate (4.2.1), hence the cons t ruc t ion  of D 

with n = i(A) = f ( D )  exists. Since A(5 - (¢,  t)) is SR, it has form A(X2, ut) 

for some charac ter  Xu and some u E k ' ,  as indicated in §1. Set t ing ¢ = X1 yields 

the s t a t emen t  (5.2.1), and proves (i). 

The  condit ion f = a > ep~ = e does not violate (4.2.1), hence the cons t ruc t ion  

D -- A ( ~ ,  t) ® A(5 -- (~,  t)) exists with these parameters .  Since a/~ep~, f / ~ c ( D )  

by L e m m a  5.1(ii), hence D is s tubbed  by Theorem 1.3(vi). Since f -- a, D has a 

split  decompos i t ion  by L e m m a  5.1(iii). By  Theo rem 1.3(v), if D is s tubbed  then  

D contains every T R  F-extens ion  of degree dividing _c(D), and _c(D) = e(D). 
Since D has a split decomposi t ion,  e (D)  = e (D)  by L e m m a  1.4. This  proves (ii). 

By Corol lary  3.8, A(5 - (¢,  t)) has a T R  subfield if and only if it has a SR 

subalgebra.  Since A(5 - (¢,  t)) is indecomposable  (by Theorem 2.2), it has no 

proper  division subalgebras,  hence either it is SR itself, or it has no T R  subfields. 

Thus  by L e m m a  5.1(i), A(5 - (¢,  t)) will not be SR if n < f (D) .  By Definit ion 

1.2, D will have T R  subfields of degree  larger than  n (=  i ( (¢ ,  t)))  if n < e (D) .  

Therefore  to prove the decomposi t ion  described in (5.2.3) exists, it suffices to 

show the D of L e m m a  4.2 exists with n < e (D) ,  and n < f (D) .  

The  condit ion n < f = a < e does not violate (4.2.1). Therefore  by L e m m a  

4.2 there is a decomposable  D with  n < f (D) .  Since f = a]  e, D is s tepped  by 

L e m m a  5.1(ii), hence e (D)  = e ( D )  by Theorem 1.3(vi), hence n < ~(D) (since 

n < f ( D )  [ e.(D)), as desired. To produce a s tubbed  example,  take n < e < f = a 

and ep, = e (i = 1, 2). Again this does not violate  (4.2.1), and so again by L e m m a  

4.2 there  is a decomposable  D with  n < f (D) .  This t ime a ~e,  and since e = ep~, 
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D is s tubbed by Lemma 5.1(ii). Since f = a, D has a split decomposit ion (again 

by Lem ma  5.1), hence e (D)  = ~(D) by Lemma 1.4. Therefore n < e(D), as 

desired. This completes the proof. | 

6. R e s u l t s  o v e r  k( t )  

Let  k be a number  field, let k(t) be the rational function field in one variable, and 

let k((t)) be the complet ion of k(t) at t. By a theorem of Auslander Brummer ,  

Fadeev (see e.g. [FSS]), there is a split exact sequence 

(6.0.1) 0 , C , B r ( k ( t ) ) ~  Br(k(( t ) ) )  , 0. 

The  map res is restr ict ion to k(( t ) ) ,  earlier denoted by • k((t)). The  map s is a 

split t ing of res. If a • Br(k)  and X • X(k) ,  then the element a $ (X, t) may  be 

defined over k(t) by identifying a with its restriction to k(t) and lett ing (X, t) be 

the usual cup product  of X and t, or al ternatively the class of the cyclic crossed 

product  defined by X and t over k(t). Since res is just extension of the ground 

field, clearly res (a  + (X, t)) is the element a q- (X, t), defined over k((t)). Thus 

s may  be defined so tha t  s ( res(a  4- (X, t))) = a 4- (X, t). Then,  by L emma  4 in 

[Brl], 

(6.0.2) i(s(6)) = i(6). 

Given Index Formula (1.1) for 6, this can be proved by noting tha t  always 

i(s(6)) -- i (a  4 (X, t)) _< [g ( t )  : k ( t ) ] ,  i ( (a  4- (X, t)) K(t)) = i(6), where 

K(t) := K(xk(t)>, while on the other  hand, always i(6) = i(res(s(6))) < i(s(6)),  

since index can only go down upon restriction of scalars. Thus  i(s(6)) = i(6). 

Since s is an injection, 

(6.0.3) o(s(6)) = 0(6). 

It is possible to prove some decomposabil i ty results over k(t) as direct corollar- 

ies of the results over the discretely Henselian field F --- k(( t ) ) ,  using (6.0.2) and 

(6.0.3). The  results apply only to the elements in Br(k( t ) )  tha t  are in the image 

of s, i.e., to elements of the form a $ (X, t). However, the ring au tomorphism 

k(t) --* k(t) defined by t H t - u, u • k" allows t to be replaced by any linear 

pr ime t - u wi thout  affecting the substance of any of the results. Thus the results 

really apply to  all elements of Br(k( t ) )  of the form 6 = a + (X, t - u), u • k .  
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By [Jn] Ch. II, §5, the polynomial X ~ - ut, u C k is irreducible over k(( t ) ) ,  

hence also over the subfield k(t) .  Let T be a root. Then k( t ) (T)  ~ k (r ) ,  and 

k((t))(T) TM k((r)) :  For k(T) D k( t ) (T) ,  since t = r e .  1/u,  and clearly k0- ) C 

k( t ) (T) .  For the second isomorphism, see [Jn]. The extension k ( ( 7 ) ) / k ( ( t ) )  

T ~ = ut is totally ramified of degree e, and all totally ramified k((t))-extensions 

of degree e have this form, as noted in §1 preceeding Definition 1.2. 

LEMMA 6.1: Let  k ( T ) / k ( t )  and k ( (T ) ) / k ( ( t ) )  be extensions defined by the (irre- 

ducible) polynomial  X ¢ - ut, u E k ,  as above. Let  D be a k(t)-division algebra 

representing an element in the image of s. That  is, [D] = s(res([D])) in (6.0.1). 

Then D ® k(( t ) )  is a division algebra, and 

Sketch of  Proof." That  D ® k(( t ) )  is a division algebra follows directly from 

(6.0.2). The theorem of Auslander-Brummer, Fadeev (6.0.1) applies to k(v) ,  

since k(T) is rational over k. It can be shown that  there is a commutative 

Br(k(T)) res~ . Br(k((T))) 
4 

t011/ T T 
r e s  , 

Br(k(t)) • ~ Br(k((t))) 

This follows from the functoriality of restriction of scalars. Since the injections 

s preserve index, a diagram chase shows that the index of [D] is lowered by e 

upon restriction to k i t  ) if and only if the index of res([D]) is lowered by e upon 

restriction to k((T)) .  Therefore k(T) C D if and only if k((T))  C D ® k(( t ) ) .  

| 

If 6 E Br(k(t)) ,  the residue and ramification indexes of 6 with respect to t are 

defined to be the corresponding invariants of res(6) E Br(k((t))).  

Furthermore, for 6 in the image of s, Definition 1.2 can be made equally well 

over k(t): 

Definition 6.2: Let D / k ( t )  be central simple, with Brauer class 5. The cei l ing 

n u m b e r  c~(D, t) - c~(6, t) for u C k" is the largest n such that F ( ~ / ~ )  C A(D). 

The u p p e r  cei l ing n u m b e r  e ( D )  - e(~) and the lower  ceil ing n u m b e r  

c(D) =- _c(6) are the least common multiple and the greatest common divisor 

c n k((,-)) c n ® k((t)).  

diagram 
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of the c~(D, t), respectively, taken over all u C k .  Call D and 6 s t u b b e d  if 

~(D) I f(D), and s t e p p e d  if ~(D) ~f(D).  

By Lemma 6.1, the resulting parameters cu(5, t), c_(5), and ~(5) are equal to 

cu(res(5), t), _c(res(5)), and a(res(5)). 

If 5 E Ira(s), then a decomposition for A(5) may involve nontrivial terms of C, 

which are no t  in the image of s. Thus a priori it is not clear that an element in 

the image of s that is indecomposable when restricted to k((t)) is indecomposable 

over k(t). However, this turns out not to be a problem: 

PROPOSITION 6.3: Suppose 6 E Br(k(t)) has p-power index, and is in tile image 

ors in (6.0.1). Then 

A(5) is decomposable ¢=~ A(res(5)) is decomposable 

where res is the restriction to k((t)). There are at most 2 nontrivial factors in 

any decomposition. 

Proof'. Suppose 5 E Im(s). Then i(5) = i(res(5)) by (6.0.2). If A(5) is 

decomposable, then the basic theory shows that the index of the factors in any 

nontrivial decomposition A(6) ~ A(51) ® A(52) can only go down on restriction 

to k((t)). That  is, i(res(6~)) I i(5~). Yet since res(5) = res(51) + res(52) (since res 

is a homomorphism), i(res(5)) [ i(res(51)) • i(res(62)) by (1.3.1). Therefore the 

indexes of the factors of 5 don't go down at all on restriction to k((t)), hence 

A(res(5)) is decomposable. Since each A(res(6~)) is indecomposable (by Theorem 

2.2), each A(hi) is indecomposable over k(t) by the same argument, so there can 

be at most 2 factors in any decomposition of A(6). 

Conversely, suppose A(res(5)) is decomposable, where s(res(5)) = 6, and 

A(res(5)) TM A(res(51)) ® A(res(52)) is a nontrivial decomposition in Br(k((t))) 

(where the 5i are defined by s(res(Ti)) = 5~). Then 6 = 51 + 52, since s is a 

homomorphism. Since s preserves index, i(5) = i(62)i(51). Therefore A(5) is 

decomposable. | 

COROLLARY 6.4: There exist indecomposable k(t)-division algebras with un- 

equal period and index. For any number field k, there are examples with (o, i) = 

(p2,pS), for any prime p. 

Proof" This follows directly from Proposition 6.3, applied to Corollary 3.2: Let 

5 be the element in the image under s of the indecomposable example of period 
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p2 and index p3 in Corollary 3.2. Then by (6.0.2) and (6.0.3), 0(5) = p2 and 

i(~) = p3. By Proposition 6.3, A(~) is indecomposable. II 

Remarks 6.4.1: (i) This example solves open problem #7  posed by Saltman in 

[Sa2]. 
(ii) The author does not know whether these examples are the smallest that  

exist over k(t), i.e., whether there exist indecomposable k(t)-division algebras of 

period p and index greater than p, when k is a number field. 

COROLLARY 6.5: Suppose 6 E Br(k(t)) has p-power index, and is in the image 

ors in (6.0.1). Then 

A(~) is decomposable <==~ p l~('9. 

Proof." By Definition 6.2 and Lemma 6.1, c(~) for ~ E Br(k(t)) is the same as 

_c_(res(6)), where res is restriction to k((t)). Therefore this result follows directly 

from Proposition 6.3. II 

Using Definition 6.2, Lemma 6.1, and Proposition 6.3, one can at tempt to 

reconstruct all of the proofs of §§2, 3 and 5 in the current setting, as has been 

done in the above corollaries. The author claims that there is no obstruction to 

doing this. Proposition 6.3 shows that  any decomposition that  can be constructed 

over k((t))  can be defined over k(t), and conversely a k(t)-division algebra is 

decomposable if and only if it has a decomposition into factors from the image 

of s. 

As for Section 4, it is not hard to show that results analogous to Theorem 4.1 

can be proved using Proposition 6.3. However, the counterexample in Theorem 

4.3 and Corollary 4.4 may fail since the indecomposable division algebra presented 

there might conceivably embed properly in a division algebra representing some 

element of the kernel C of (6.0.1). 

Some questions raised by these results: 

(1) Does a decomposition of more than 2 nontrivial factors of prime power 

index exist over k(t)? 

(2) Do there exist indecomposable k(t)-division algebras of prime period not 

equal to index? 

(3) Does every indecomposable k(t)-division algebra of p-power index embed 

in a larger one of p-power index when k is a number field? 
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(4) If  6 E Im(s),  do there exist nontrivial decompositions of A(6) with terms 

in C? 

(5) What  is the situation over the field k((s))((t))  of iterated formal power se- 

ries in two variables? Is there a nice "geometric" criterion for 

decomposability there? 
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